Phrenology, the Origins of Scientific Naturalism, and Herbert Spencer’s “Religion of the Heart”

Wyhe - PhrenologyOver the weekend I came across several interconnecting books and themes. The first was John van Wyhe’s excellent Phrenology and the Origins of Victorian Scientific Naturalism (2004), which traces the origins of scientific naturalism back to British phrenology. In this book Wyhe takes the “social interests” approach, resting on the “common-sense assumption,” he writes in his introduction, “that people are disposed to like or dislike, to adopt or reject ideas according to their coherence or usefulness to social interests.” Wyhe wants to argue that phrenology, “the science of the mind,” was hugely diffused before and after Darwin’s Origin of Species. It was this “phrenological naturalism” that fed the stream of the scientific naturalism of Huxley, Tyndall, Spencer, and others. What is more, the professional and religious controversies that followed the surge of phrenological works “were often personal competition for status and authority between individuals, rather than manifestations of group conflicts.” In saying this he follows the work of Adrian Desmond, James Moore, John Brooke, Peter Bowler, Frank Turner, and others. The “‘science and religion’ conflict,” he writes, was  about “personal competition between individuals for status and authority.”

According to Wyhe, phrenology had its roots in the German work of physicians Franz Joseph Gall (1758-1828) and Johann Spurzheim (1776-1832), before greatly expanding in Britain in the 1820s with the work of George Combe (1788-1858). Gall was a rather eccentric individual. He not only amassed a large collection of human skulls, he also saw himself as somehow superior to the rest of mankind. Gall used his phrenological studies, his system schädellehre (“doctrine of the skull”) or “the physiology of the brain,” to proffer the notion that Nature should be seen as the ultimate arbiter. Spurzheim became Gall’s patron, student, and eventually dissecting assistant. Early in the century, Spurzheim composed his Philosophical catechism of the natural laws of man, which attempted to apply “immutable law” to mankind. Most of this work was borrowed from the work of French revolutionary writer Constantin Francois de Volney (1757-1820), his The law of nature (1793). Volney rejected revelation and called for the worship of Nature. According to Wyhe, Volney taught that “Man’s happiness increased the more he acted in accordance with the law of nature and that science was necessary to know the ‘facts’ of nature.” Spurzheim himself was anti-clerical and, like Volney, was strongly deistic.

According to Wyhe, Combe “revered Spurzheim.” His The Constitution of Man (1828), he says, “should be recognized as the major British work on progress in the years before [Robert Chambers’] Vestiges of the natural history of creation appeared in 1844.” Wyhe modifies and reproduces a chart found in James Secord’s Victorian Sensation (2000), demonstrating the remarkable popularity of Combe’s work:

Wyhe Chart (2)
Used with permission

Its sales were tremendous. But even more remarkable is Wyhe’s claim that the “crux of the book’s provocativeness was its effectiveness as an alternative to Christianity.” It was an attempt to provide an “alternative for the traditional Christian system as a guide of conduct, and especially beliefs of the fallen state of Nature and Man, the sufficient and necessity of the Bible as a guide to daily living and as a moral, philosophical, and epistemological authority.” According to Combe, if man devoted himself to obeying the “‘doctrine of the natural laws,’ all would live in a happier, healthier world and experience the greatest possible joys and satisfactions as civilization, and individuals, progressed ever further towards perfection.” To secularists like George Jacob Holyoake (1817-1906), Combe’s Constitution was “a new Gospel of Practical Ethics.” For Combe, god became Natural Law.

It should be clear that Combe’s Constitution was not simply a textbook on phrenology. It was the formation of a new “sect”; a new creed or worldview of the naturalists.

Another interesting fact about Combe is that he was one of the earliest narrators of the much maligned—at least, among contemporary historians of science—”conflict thesis” between religion and science. In his On the Relation between Science and Religion, first published as a pamphlet in 1847, Combe foresaw a “new faith” arising, one that would recognize natural laws as the providential instructor of humanity. “Science,” he says, has banished the “belief in the exercise, by the Deity…of special acts of supernatural power, as a means of influencing human affairs,” and in its place has “presented a systematic order of nature, which man may study, comprehend, and follow, as a guide to his practical conduct. In point of fact, the new faith [he says] has already partially taken the place of the old.” This has been no easy task. Since the “days of Galileo to the present time, religious professors have too often made war on science, on scientific teachers, and on the order of nature.” What we need, says Combe, is a “new Reformation” and a “new creed,” one which will “harmonize with a sound Natural Religion.” As Wyhe observes, this narrative of conflict would be taken up later in the century by scientific writers such as Huxley—but also Tyndall, Spencer, Draper, and White, among others.

One of the more salient features of Combe’s Constitution was his optimistic view of progress. Progress was mankind’s salvation. According to Wyhe, “Combe’s engine of progress, like that of Condorcet, Lord Kames and later of the historian H.T. Buckle, Henri de Saint-Simon and Auguste Comte, was natural law, and especially the increased knowledge of natural law.” Nature was naturally progressive. Man was naturally progressive. But ignorance of science stymied progress; it was mankind’s “chief cause of suffering.” And like the other authors Wyhe lists, Combe saw mankind as “arranged in a hierarchical scale of superiority and inferiority.” In Combe’s view, the bottom rung of the hierarchy began with non-Europeans (i.e., those with “dark skins”), and led to western Europeans (i.e., particularly himself).

Despite its extraordinary popularity (e.g., British sales in 1893 reached approximately 125,000 copies), Combe’s work was not without its critics. Indeed, according to Wyhe, “the controversies over Vestiges and The origin of species really pale in comparison with those over Constitution.” Evangelicals and members of the Edinburgh Phrenological Society were particularly critical. Most were concerned that Combe’s new philosophy would somehow replace Christianity or, even worse, God. Another was where to find the source of morality in a completely naturalized cosmos. Yet another was Combe’s claims of natural progress and the “infinite perfectibility of Man.”

Nevertheless, many—secular and religious—found ways to lessen the more radical implications of Combe’s philosophy. Most importantly, Combe’s Constitution appealed to a recent surge of popular scientific texts that trumpeted the “overarching cosmology of progress through natural law.” This idea of progress, as many scholars have pointed out, had religious foundations. Indeed, Combe himself claimed that his work “fulfilled the Bridgewater goal” of demonstrating the “power, wisdom, and goodness of God, as manifested in the Creation.” But just who or what god was, Combe never says.

Taylor - The Philosophy of Herbet SpencerIn many ways, Combe and his Constitution cleared the way for Huxley, Tyndall, Spencer, and others. In fact, my other reading over the weekend, Michael W. Taylor’s The Philosophy of Herbert Spencer (2007) and Mark Francis’ Herbert Spencer and the Invention of Modern Life (2007), both mention the important influence of Combe’s work on Spencer. Taylor comments on how Spencer used several  doctrines found in Combe, particularly that “happiness requires man to obey the natural laws,” and that “disobedience as surely brings its punishment in the one case, as in the other.” In short, “Spencer’s mature moral philosophy was founded on the same conception of the beneficence of the laws of nature that was to be discovered in the writings of predecessors like Combe, Hodgskin, and Chambers.”

Francis - Herbert Spencer and the Invention of Modern LifeIn his book, Francis thinks Spencer has been misinterpreted, and thus offers a reappraisal. He portrays Spencer as an oversensitive man filled with feeling. In this sense Spencer was not unlike Luther, a prophet of the new century calling for a New Reformation not only in science, but also morality and religion. Members of the New Reformation, including Spencer, held strongly to a metaphysical belief in the Unknown, were often called “spiritualists,” and were behind the weekly journal, The Leader.

Francis rejects the notion that Spencer was the progenitor of Social Darwinism. Spencer’s evolutionary theory, he says, “(i) did not focus on species change; (ii) did not draw on natural selection or competition; and (iii) did not accept the modern individuals or societies would continue to make progress through struggle for survival.”

Most interestingly, however, Francis highlights Spencer’s religious background, and how religion continued to play a prominent role in his writings, where one can find a “reservoir of religious meaning.” Spencer wanted to create a “new morality and metaphysics with which to replace both orthodox Christianity and materialistic positivism.” He rejected Comte’s alleged scientific rationalism for a “religion of the heart.” Science must have some religious aim.

These three remarkable works continue to complicate and even problematize conventional views of the scientific naturalists. The lives and ideas of this coterie were often messy, incomplete, inconsistent, and contradictory.  In other words, they were human.


De-centring the Scientific Revolution, Paley’s Natural Theology, Mobilizing a Prophetic Newton, and Maxwell’s Design Argument

I still have several articles open on my pdf reader that are worth mentioning before I officially end my reading of The British Journal for the History of Science, and before tackling other articles from other journals and books.

In discussions over the historiography of the “Scientific Revolution,” almost all the authors I have recently read have mentioned Andrew Cunningham and Perry Williams’ “De-centring the ‘big picture’: The Origins of Modern Science and the Modern Origins of Science” (1993). They argue that a big picture of the history of science cannot be avoided, and that “big pictures are both necessary and desirable.” Indeed, the “big picture” is crucial, if not necessary, for giving any localized, “small picture” meaning. But in saying this, Cunningham and Williams also want to expose and reconstruct the aims of the founders of the “old big picture” of the history of science (Herbert Butterfield and his followers), which maintained that “science…[is as] old as humanity itself.” This was a single, grand, and sweeping history of science.

Without usurping this “old big picture,” Cunningham and Williams want to promote a different account, one that emphasizes the idea that our world is fragmented into a plurality of local, autonomous discourses, and based on principles of postmodernism and poststructualism. They then rehearse the problems which have arisen with the concept of the “Scientific Revolution” since Butterfield. Modern notions of the scientific revolution derive from conceptions of science in the early and mid-twentieth century, including positivist definition of “science as a particular method of enquiry” that produces “knowledge in the form of general causal laws”; as essentially moral, “as the embodiment of basic values of freedom and rationality, truth and goodness”; and as a “universal human enterprise,” which emanates from some innate, human curiosity. In the 1940s, historians of science incorporated these characterizations of science as they developed the concept of the scientific revolution. In short, they projected their own contemporary definitions of science onto past.

According to Cunningham and Williams, such a view of the “Scientific Revolution” is no longer tenable. The “new big picture,” they argue, should view science as a contingent enterprise reflecting the aims and morals of a particular social group in a particular historical time; one among a plurality of ways of knowing the world, it must be seen as limited, bounded in time and space and culture. In their estimation, the origins of science “can be located in Western Europe in the period sometimes known as the Age of Revolutions—approximately 1760-1848.” “Every feature which is regarded as essential and definitional of the enterprise of science,” they write, is identifiable during the Age of Revolutions: “its name, its aim, its values, and its history.” On this view, “the history of science becomes a relatively short and local matter.” This realization, they maintain, is “de-centring,” in the sense that we realize “that external objects have permanence, that other people can have different knowledge, interests, feelings, and so on.” It is a shedding of egotism. “To see science as a contingent and recently-invented activity is to make such a de-centring, and to acknowledge that things about our primary way-of-knowing which we once thought were universal are actually specific to our modern capitalistic, industrial world.”

For those interested in the history of the publication, teaching, reception, and use of natural theology in the nineteenth century, Aileen Fyfe’s essay “The Reception of William Paley’s Natural Theology in the University of Cambridge” (1997) is essential reading. Studying the examination papers of the University of Cambridge, contemporary memoirs, autobiographies and correspondences, reveals, Fyfe argues, that Paley’s Natural Theology (1802) was not a set text at the university in the early nineteenth century. “Theology proves to have been a relatively minor part of the formal curriculum, and natural theology played only a small role within that.”

Writing in his dedication page in Natural Theology, William Paley (1743-1805) maintained that three of his books contained “the evidences of Natural Religion, the evidences of Revealed Religion, and an account of the duties that result from both.” The most recent was his Natural Theology (1802), preceded by his A View of the Evidences of Christianity (1794) and the Principles of Moral and Political Philosophy (1785). By all measures, Natural Theology was a great success, going to “through fifteen editions in as many years, and while the print runs are not known, this suggests sales of around 15,000 copies.” Reviews from Edinburgh Review, Monthly Review, Monthly Magazine, and Churchman’s Magazine found it most agreeable, and some even “mentioned its educational potential.” Some reviewers from the Evangelical Magazine, however, worried that Natural Theology would lead readers to “dangerously conclude that no other religion [that is Scripture] is necessary to their eternal salvation.” English politician, philanthropist, and leader of the movement to abolish the slave trade, William Wilberforce (1759-1833) wrote in the Christian Observer that Paley’s assertions were “both untenable and unsafe…We are the more suspicious of the sentiment…because we recollect that it was made the ground of the theological system of [the noted deist and radical] Thomas Paine.” As Fyfe write, some “Evangelicals associated Paley’s work with deism…[and] with [the] radicalism after the French Revolution.”

Despite these criticism, Paley’s Natural Theology was immensely popular. Moreover, when Charles Darwin’s Origin of Species (1859) emerged, “natural theology did not suddenly end in 1859,” a point Jon H. Roberts cogently confirms in his entry in Ron Numbers’ (ed.) Galileo Goes to Jail and Other Myths about Science and Religion (2009). But as far as being a set text at Cambridge, Paley’s Natural Theology was not used. Natural theological questions “rarely occurred in university or college examination,” and thus natural theology never quite achieved “equality with revealed theology.” As Fyfe concludes, “natural theology did not have very much formal recognition in the mathematical University of Cambridge at a time when Evangelicalism was spreading and deism was threatening. It could have been recognized only as a defense for theology or as an implicit background assumption for the natural sciences.”

Those curious about “geographies of reading”—I stand convicted—may turn to David N. Livingstone’s corpus, particularly (but not most importantly) his “Science, Religion, and the Geography of Reading: Sir William Whitla and the Editorial Staging of Isaac Newton’s Writing on Biblical Prophecy” (2003). “Writings of eminent scientists,” Livingstone claims, “can be mobilized in the cause of local cultural wars.” And indeed they have.

Isaac Newton’s insistence that nature follows  mathematical laws, for example, was marshalled by seventeenth-century churchmen both to mount assaults on atheism and to curb radical inclinations towards religious enthusiasm. At the same time, the Newtonian system was also enlisted in contemporary debates about the role of the monarchy, the nature of the state and the constitution of the social order. In more recent times, American creationists have called upon the doctrines of earlier scientists as self-justification  for their own credo, while those inclined towards theistic evolution have likewise sought reinforcement from earlier advocates of a Christianized Darwinism.

These are tactics in the “attempt to create a suite of canonical scientific texts to serve the needs of some particular sensibilities.” In this way Livingstone wants to draw our attention “to the consumption sector of the scientific knowledge circuit, to the different ways texts were received in different localities and to the spaces in which theories were encountered and textual meaning made.” From Robert Chambers, Alexander von Humboldt, to Charles Darwin’s corpus, “the meaning of texts…shifts from place to place, and at a variety of different scales.”

Six years after his death, Isaac Newton’s commentary on the biblical books of Daniel and Revelation was published in 1733 as Observations upon Daniel and the Apocalypse of St. John. In Two Parts. Nearly two hundred years after this first appearance, William Whitla, professor of Materia Medica at the Queen’s University of Belfast, in 1922 made Newton’s text available again to the reading public, under the title Sir Isaac Newton’s Daniel and the Apocalypse with an Introductory Study of the Nature and the Cause of Unbelief, of Miracles and Prophecy.

Whitla was fascinated with the prophetic writings of the Jewish prophets. He was also good friends with William Bramwell Booth, General of the Salvation Army, and dedicated the new book to him. Whitla wanted to use the book against those who were undermining the authority of the sacred text. Newton, who “in strong and childlike faith lent his mighty intellect to the study of this fascinating record.” As Livingstone puts it, “the aim was to muster biblical prophecy Newtonian-style in the conduct of current culture wars.” With the outbreak of the First World War, W.B. Yeats fearing the “reversal of Christian values,” and the 1920s “heresy trail of J. Ernest Davy in Northern Ireland, Whitla saw all these “ominous signs” as “an unmistakable mark of the ‘latter days’ which are to terminate the present dispensation.” Moreover, the “moral leprosy” of biblical critics was spreading “into the heart of the Church itself.” Whitla would use Newton to counter this European crisis.

Ironically Whitla did not “broadcast the fact that Newton had come to doubt the accuracy of the textus receptus of the New Testament”; and neither did he mention that Newton had rejected the doctrine of the Trinity. Whitla also used Newton for anti-Catholic propaganda, re-staging Newton’s own anti-Catholicism, equating the Papacy with the “autocracy of the most satanic character.” Whitla thus valorized Newton’s text as a Protestant polemic. “All of this serves,” Livingstone concludes, “to underscore the salience of textual performance, spaces of reading and sites of reception in elucidating the dynamic geographies of scientific knowledge and religious belief.”

And finally, an intimate and complex relationship between religion and scientific practice is demonstrated in Matthew Stanley’s recent “By Design: James Clerk Maxwell and the Evangelical Unification of Science” (2012). Stanley argues that Scottish physicist James Clerk Maxwell (1831-1879), known for his formulation of a set of equations that united electricity, magnetism, and optics into a consistent theory, “saw a deep theological significance in the unification of physical laws.” This search for unification was connected to Maxwell’s “particular evangelical religious views.”

Stanley also wants to compare and contrast Maxwell’s own design argument with Paley and those of the modern Intelligent Design (ID) theory. According to Stanley, “both Paley and [Michael] Behe [known for his molecular arguments of “irreducible complexity”] argue that a certain level of complexity could never be explained by naturalistic science, and thus the search for such explanations must stop.” Although Maxwell embraced claims of natural theology, “his evangelical religiosity gave him a rather different perspective.”

Maxwell believed that nature was like a book, with each element a manifestation of a deeper unifying principle. The connections between laws were a sign from above: “…the laws of nature are not mere arbitrary and unconnected decisions of Supreme Power, but that they form essential parts of one universal system, in which infinite Power serves only to reveal unsearchable Wisdom and eternal Truth.” The interrelationship of natural laws “was a way that God communicated His existence, and it was the unity of laws that revealed this communication.” Indeed, the “unity of nature was…guaranteed by theology.” Thus whereas “Paley emphasized complexity as the indicator of God’s hand, Maxwell emphasized unity.”

Stanley notes that Paley, Behe, and Maxwell would all agree that Darwinian evolution was not a reliable scientific theory. For his part, however, Maxwell argued that “Darwinian evolution relied on pre-existing variation, and thus perfectly uniform molecules could never have evolved.” His rejection of Darwinian evolution thus relied on his understanding of unity in nature, not complexity.

As a conservative evangelical Christian, Maxwell had specific notions about the nature of God. Victorian evangelicalism, Stanley tells us, was a “‘religion of the heart,’ with an emphasis on conversion, sin and grace, and moving away from the rationalizism of the Enlightenment in an attempt to resurrect the lost, primitive Church uncontaminated by human failings.” In the summer of 1853, Maxwell gained a newfound evangelical outlook. Maxwell wrote:

I maintain that all the evil influences that I can trace have been internal and not external, you know what I mean—that I have the capacity of being more wicked than any example that man could set me, and that if I escape, it is only by God’s grace helping me to get rid of myself, partially in science, more completely in society,—but not perfectly except by committing myself to God as the instrument of His will, not doubtfully, but in the certain hope that that Will will be plain enough at the proper time.

Divine grace, submission to God, Christology, and Scripture were constantly upon his mind, as his letters to friends and relatives show. From this evangelical perspective, Maxwell saw humanity as “fallen, sinful and fallible.” But “God gave humans the ability to see his actions,” if they would only “embrace Him fully.” Revelation was ultimately mysterious, but so was nature, according to Maxwell: “I have endeavoured to show that it is the peculiar function of physical science to lead us to the confines of the incomprehensible, and to bid us behold and receive it in faith, till such time as the mystery shall open.” In his inaugural lecture at Aberdeen in 1856, Maxwell clearly shows how his theology of nature was manifested in his physical science:

Is it not wonderful that man’s reason should be made a judge over God’s works, and should measure, and weigh, and calculate, and say at last ‘I understand I have discovered—It is right and true’…we see before us distinct physical truths to be discovered, and we are confident that these mysteries are an inheritance of knowledge, not revealed at once, lest we should become proud in knowledge, and despise patient inquiry, but so arranged that, as each new truth is unravelled it becomes a clear, well-established addition to science, quite free from the mystery which must still remain, to show that every atom of creation is unfathomable in its perfection. While we look down with awe into these unsearchable depths and treasure up with care what with our little line and plummet we can reach, we ought to admire the wisdom of Him who has arranged these mysteries that we find first that which we can understand at first and the rest in order so that it is possible for us to have an ever increasing stock of known truth concerning things whose nature is absolutely incomprehensible.

Stanley writes, “Maxwell’s God was a teacher who wanted his students to learn all the details of the world, which He organized in such a way as to help them in their studies.”

The “Scientific Revolution” as Narratology (Part 3)

Following a suggestion from my supervisor, I have looked at a collection of essays contained in  European Review‘s (2007) forum Focus: Thoughts on the Scientific Revolution. Some of the essays in this journal were reproduced, albeit modified, in Recent Themes in The History of Science and Religion: Historians in Conversation (2009), edited by Donald A. Yerxa, which were conversations selected from a series of forums appearing in the journal Historically Speaking from 2005 to 2008.

Donald A. Yerxa begins the discussion by assessing the “turmoil” within the historical profession caused by postmodernist thinking and literary theory. The postmodernists “dismissed as epistemological naivety the notion that historians employing detached empirical methods can arrive at narratives that reasonably correspond with the past.” The past only reaches us “configured, troped, emplotted, read, mythologized and ideologized.” As a compromise, practicing historians are now more “open to almost any aspect of human experience,” yet have rejected the “nihilistic tendencies of postmodernism in favor of a commonsensical approach to their craft.”

These challenges and changes in the historical profession calls for “revisiting the question of whether there was such a thing as a Scientific Revolution in the sixteenth and seventeenth centuries.” According to Yerxa, recent historiography has not been kind to the concept of a coherent and momentous scientific revolution. He fears a historiographical “climate that celebrates novelty, the particular, the local, in a word, complexity.” Why? He says that “if the quest for a coherent Scientific Revolution is deemed a fool’s errand, what then of other historical frameworks like the Renaissance and the Enlightenment?” “Absent the search for coherence,” he goes on, “historical inquiry as a meaningful intellectual enterprise flirts with bankruptcy and historians risk becoming guardians of antiquarianism.” One should not however overemphasize these fears. Yerxa himself comes to a more measured conclusion in his introduction to Recent Themes, aided by a closer reading of John Hedley Brooke’s Reconstructing Nature: The Engagement if Science and Religion (1998), who maintained that “paying attention to complexity does not eliminate the historical patterns needed to make coherent historical narratives; it just yields ones that are more intricate.”

The following essays in European Review “maintain that the Scientific Revolution, refined in various ways, remains a functional historical framework.” Peter Harrison, for example, asks “was there a Scientific Revolution?” and responds with a resounding “yes,” but adds it was more philosophical in nature than scientific. Following Pierre Hadot’s recent suggestion, who understood pre-modern philosophy “‘as a way of life’ rather than a body of philosophical doctrines,” Harrison argues that in the early modern period we see “a major reorientation of the goals of philosophy, a reorientation that will eventually produce not only something more akin to modern science, but also something more like modern philosophy.” This philosophical reorientation begins with Francis Bacon’s new vision of knowledge. According to Bacon, the study of nature should not be a passive, contemplative activity; rather, it should be a collective and cumulative endeavor. As Harrison rightly points out, “although Bacon is generally regarded as having made no substantive contribution to science, his ideas about its goals and method were influential and served as the inspiration for scientific societies both in England and Continental Europe.” In the end, Harrison sees in the seventeenth century the appearance of “new attitudes and values that will promote…’the emergence of scientific culture.'”

William R. Shea’s essay argues that the scientific revolution is best “described not by imposing a twentieth-century template on the seventeenth-century, but by attending to the actual unfolding of science against the background of the richness and the idiosyncrasies of human nature.” The work of Paolo Rossi and Frances Yates, Shea tells us, offers a fresh interpretation of that great philosophical innovator, Francis Bacon. According to Rossi, Bacon was an alchemist and was inspired by the Hermetic tradition. Indeed, his “experimental science” was partly rooted in the “occult philosophy” of the Renaissance. Thus in Sylva sylvarum (Forest of Forests), a natural history book that emphasized the necessity of practical experiments, Bacon stated that he considered experimental science as a “high kind of natural magic.”

Shea also argues that new technology opened new vistas. The telescope and microscope, the thermometer and the barometer, changed the philosophers’ attitude toward their craft. This new attitude was that knowledge is power, and that “power is to be used not only to contemplate nature but to modify and improve it.” Shea concludes his essay by admitting that the desire of achieving mastery over nature was present in the Hermetic tradition, but during the scientific revolution achieving that mastery was “profoundly different.” “Modern science,” he says, “favoured logical rigour, experimental control and public debate where hermeticism merely dreamt of leaping over rationality itself.” Shea’s tendentious language here reveals his partiality. Such seemingly innocuous terminological (“misguided,” “irrational,” “dangerous,” “ridiculous,” and the like) conventions are often the reflection of hidden or implicit ideological agendas. Often this perception of “modern science” has led to serious distortions of the historical record, usually in the form of simplified pictures of complex realities and the creation of imaginary “enemies.” It is odd that Shea would come to such conclusions while being familiar with the exceptional and path-breaking work of Rossi and Yates. Ideologies die hard.

John L. Heilbron rejects the advice of Tore Frängsmyr, who had argued that historians are better off avoiding the metaphor “scientific revolution” because it can only serve as a model, a heuristic approximation, not a literal truth, and thus cannot be used unambiguously. Heilbron, in contradistinction, wants to distinguish between revolutionary ideas, revolutionary situations, and revolution. By revolutionary ideas, Heilbron banally says “where they are encouraged and rewarded, there is no end to them.” By revolutionary situation, he means an event where “people lose confidence in existing law and authority, when they reject obligations as impositions, regard respect for superiors as humiliation, and condemn privilege as unfair and government as irrelevant.” And by revolution he means the lost sense of unity a community once held.

There was no scientific revolution in the sixteenth century, despite an amazing array of developments. Why? One reason, according to Heilbron, was that the best minds were engaged with doctrinal disputes and the wars of the Reformation and not the knowledge of nature. Its aftermath, the Counter Reformation and the Council of Trent, “enforced a doctrinal conformity little conducive to innovation in natural philosophy.” The political situation of the Thirty Years War was not conducive to attaining natural knowledge either. It was not until the second half of the seventeenth century when “an exhausted Europe was able to devote what energy it had left to improving and dissemination natural knowledge.” Thomas Sprat (1635-1713), for instance, in his History of the Royal Society in London (1667) stressed the importance of equanimity, of a time and place “where people who might not agree on politics or religion could meet civilly and productively over a common interest” of natural knowledge. We see this same emphasis, Heilbrin asserts, in Louis XIV’s Académie Royale des Sciences and the Grand Duke of Tuscany’s Accademia del Cimento. From the founding of these scientific academies we may infer a revolution in ideas and practices. “That is what happened in natural knowledge in the second half of the seventeenth century, when ideas opposed to established learning took root in experimental academies.”

The “ingredients” that led to this revolution were “a powerful program to supplant established ways and teachings, the existence of vigorous well-educated cadres devoted to the program and the creation of new institutions and instrumentalities with which to preserve the gains of the cadres.”

This powerful program, Heilbron begins, appeared with the advent of Descartes and Cartesion physics, only reinforced by the rejection of scholastic forms, the privileging of quantifiable concepts, and a comprehensiveness in explanation. Indeed, Cartesianism quickly gained recruits, including Queen Christina, Elizabeth of Bohemia, physicians and doctors in medical schools of Utrecht, Leyden, and Naples. In France cadre were found among both Cartesian doctors and lawyers. In 1699, the Paris Academy of Sciences reorganized under its Cartesian secretary Fontenelle. In his éloges of deceased members, Fontenelle developed a standard account of enlightenment beginning with the discovery of Descartes and ending with admission to the pantheon of science. These ideas and the memory of these figures were preserved and multiplied in the academies and institutions built up around princes and prelates, librarians, lawyers, and professors. Heilbron maintains that these academies fought censorship on many levels, ushering a kind of “guerrilla warfare.” “Against this process of recruitment and cooptation, sterner censors and other guardians of the past could try to mobilize the church’s formidable machinery of repression.” The church, however, was forced to “modernize” on account of princes appointing “men more open to modern ideas to chairs of medicine” and the like. Heilbron ends with fustian praise for Isaac Newton, the “Napoleon of the piece, the Prince of Physics, the Emperor of Science.” Indeed, Newton, like Napoleon, “consolidated the gains of a revolution fought by others and extended it beyond their wildest dreams.” Heilbron leaves out Newton’s alchemical, theological, and hermetic influences, however. Indeed, in almost every way, Heilbron’s account is question begging and contested by most modern historians of science today. Heilbron certainly keeps the traditional framework of the “Scientific Revolution,” but offers little refinement.

Another essay comes from H. Floris Cohen, a scholar we have come across in previous posts. In relating how the master narrative of the scientific revolution was challenged, starting in the 1960s, Cohen tells us that many scholars began questioning an earlier generation of historical work as unreflective, often identifying present day definitions and classifications of scientific disciplines with their apparent seventeenth-century counterparts. Even the term “science” is disputed, as it carries too many associations far removed from seventeenth-century realities . Strikly speaking, science in its modern form did not appear until the nineteenth century. Modern scholars have placed scientific ideas in institutional and other sociocultural contexts, in local particularity over and against the claims of universal validity of the most seminal ideas of the scientific revolution.

The result, according to Cohen, has been skeptical resignation. “Numerous historians of science have…given up the very idea that…something identifiable holds so complex an event as the Scientific Revolution…” But this is no celebration. Indeed, Cohen laments this resignation, and that it is tantamount to giving up the quest for coherence. The general message is that the advent of modern science in our modern world was in “effect due to chance.” But in following Joseph Needham, Cohen argues that to “attribute the origin of modern science entirely to chance is to declare the bankruptcy of history as a form of enlightenment of the human mind.”

Historical scholarship requires concepts and carefully delineated theories and hypotheses. But historians often keep their conceptulaizations “fuzzy,” to avoid clear-cut, black-and-white explanations, for historians work with a fugitive called “change.” And “change over time cannot be captured well by means of fixed concepts over time.” Thus historians, Cohen argues, sometime borrow conceptual apparatuses from other disciplines. In the 1980s, for example, historians borrowed social-constructivist conceptions. But Cohen wants historians to develop their own apparatus, from the “inside,” so as to avoid a propri limitations on historical figures.

Cohen wants to replace the Euro-centric account of the history of science with a globalized account, or a “world history of science.” Previous attempts have been made by a few scholars, including Harold Dorn and Toby E. Huff, but by and large these attempts have been “unidirectional.”  What Cohen calls for is a “full-scale comparative approach.” Comparison, he tells us, is “indispensable for coming to grips with the big questions.” And then, quoting Huff— who he just criticized—Cohen argues that  “from a comparative and civilizational point of view, the rise of modern science appears quite different than it does when seen exclusively as an intra-European movement.” By the comparative approach, Cohen believes, historians can once again discover underlying patterns, and, therefore, coherence in their craft.

The final essay in the forum is by Theodore K. Rabb. Rabb begins with some personal reflections of his time as a PhD student in the 1950s. During that time he learned about the basic divisions of the past (e.g. the Middle Ages, the Renaissance and Reformation, Early Modern, Enlightenment, and Modern). “The boundaries may sometimes have been vague,” he writes, “but the essential contours were clear.”

But all that changed in the intervening half century. Added to this basic division was Buterfield’s pioneering construction of the “Scientific Revolution.” Other scholars, such as Charles Gillispie, Marie Boas Hall, Richard Westfall, and others, soon followed suit. Rabb recounts how in the 1970s he attempted to integrate the scientific revolution into the crisis literature so as to create a comprehensive interpretation of the structure of sixteenth- and seventeenth-century European history. “In my view,” he writes, “the discoveries in astronomy, physics, and anatomy were not only integral to the era, but were essential to its definition.” It is undeniable that remarkable changes took place between the 1530s and the 1690s: “objects no longer had a natural resting place; the crystalline spheres were gone; the moon was not in fact smooth and unchanging; the heart was no longer a strange organ of unknown function.” Here was a “revolution in knowledge and outlook.”

The scientific revolution, according to Rabb, “offers a means of organizing the period whose implications go well beyond the specifics of astronomy, anatomy, or physics.” It is, he says, “a shift in mentality of immense import.” This shift, or change, was from a reliance on the authority of the past to reliance on observation, mathematics, and certain kinds of reasoning. The forces at work during the scientific revolution was an increase of skepticism and the establishment of scientists as new authority figures. The religious wars of the previous century saw Europe searching to restore a sense of confidence. That confidence was found, according to Rabb, in the reassurance and tangible certainty of the increasingly united claims for the new truth about the physical world. But there is more. “What the Scientific Revolution accomplished was not merely to provide the underpinnings for a reassertion of confidence in the culture of the late seventeenth century. It achieved such status by helping shift that culture away from the assumptions it had held to be virtually inviolate for some 400 years.”

Rabb recounts a familiar narrative. In saying that “Europe would not move on from the assumptions of the Renaissance until the hold of the ancient past was broken, until it became clear that the ‘moderns’ might be able to move past these masters and establish their own authority,” he repeats the simplistic narrative of the philosophes.

This collection of essays achieves some important refinements to the scientific revolution narrative (particularly Harrison’s emphasis on a new understanding of “philosophy), but most, it seems to me, simply repeat the commonplace of a previous generation of historical scholarship. This commonplace is entrenched not only in popular interpretations but, as we have just seen, among scholars of repute as well.

Social Uses of Science

The intellectual history of the eighteenth century, including the history of eighteenth-century science, used to be summed up in the term “Enlightenment.” However, as we have seen, no one has been able to define the term with any precision; nevertheless, most historians continue to use it to identify a set of opinions that characterized the century. In The Ferment of Knowledge: Studies in the Historiography of Eighteenth-Century Science (1980), edited by G. S. Rousseau and Roy Porter, the term scarcely makes an appearance. This is deliberate. The editors and authors of this collection of essays believe that historiography of science of the eighteenth century has been utterly changed by the advent of “contextual” scholarship in a number of disparate disciplines, from the history of ideas, mythology, new approaches within Marxism and French structuralism, techniques of historians of art, religion, philosophy, and ideology, to the seminal writings of anthropologists and psychologists and others.

In their introduction the editors rightly emphasize that we can “no longer ignore the fact that the eighteenth century ‘geography of knowledge,’ the relations between the sciences, was then markedly different from our own.” The introduction explains:

The last generation has wrought a revolution in the history of science…Certainties have given way to questions. The history of science is no longer a scientist’s hymn to science: it has become part of history itself…The development of science can no longer be served up as the sure tread towards truth. But exactly how it should be viewed is a question on which no consensus is in sight…This revolution is, of course, very familiar. Its relevance here is that this profound change in the orientation—one riddled with methodological anxieties—has as yet done little for the eighteenth century.

The aim, and hope, of the present volume is thus to present a “contextual historiography” of the eighteenth century as a corrective:

…we now take it as axiomatic—and correctly—that eighteenth-century science can be properly grasped only if its “external” relations to other intellectual and cultural systems, such as theology and epistemology, are tackled head-on…It seems elementary to us (now!) that eighteenth-century scientific ideas cannot adequately be translated one-to-one into twentieth-century terminology. Indeed, one of the aims of this book is precisely to distil and evaluate this substantial body of empirical research that has been conducted in the last generation.

To achieve its ends, the editors have compiled a series of twelve essays by twelve knowledgeable authors. Of all the contributions in this volume, Steven Shapin’s “Social Uses of Science” is perhaps the most provocative and stimulating contribution.

Shapin discusses the social uses of science by analyzing a number of studies which deal with the social significance of Newtonianism, “it is in the area of Newtonianism and its career in the eighteenth century that such perspectives show their greatest inadequacies and where new notions of science and its uses display greatest promise.” An essay by Arnold Thackray looks at political interpretation of the Leibniz-Clarke debate, “The priority disputes between Newton and Leibniz…cannot be understood without examining the dynastic politics of the period from the 1680s to the 1710s.” According to Thackray, “Newton set in motion a sustained collective effort to discredit the worth, religious significance, and originality of the German’s [i.e. Leibniz] science.” An essay by Frank Manuel supports Thackray’s account that Newton was an “autocrat of science.” And George Grinnell’s argument that Newton’s own motivation was not merely proprietary but party-political interprets Newton as an anti-Catholic Whig. Shapin concludes from these contextualist interpretations that “one cannot  understand scientific judgements without attaining to the context wherein scientific accounts were deployed.”

In several articles Margaret Jacob sets out to develop a connection between Newtonian natural philosophy and Low Church politics. Shapin positively evaluates M. Jacob’s view that “conceptions of nature are tools, instruments which historical actors in contingent settings pick up and deploy in order to further a variety of interests, social as well as technical.” According to James R. Jacob and Christopher Hill, “natural philosophy in the late seventeenth and early eighteenth century was powerfully shaped by the social uses of natural knowledge during Civil War, Interregnum, and Restoration” periods.

From the contextualist interpretations of M. Jacob, J.R. Jacob, and Hill, Shapin offers a number of suggestions to explain how eighteenth century matter theory could be given a social interpretation:

First, it is to be noted that philosophies of nature were routinely seen by the actors as imbued with social meaning. This is not because of “mere” metaphorical glossing, but because in these (and later) cultural contexts nature and society were deemed to be elements in one interacting network of significances…Second, groups with conflicting social interests developed and sustained interestingly different natural philosophies; moreover, these philosophies were often produced explicitly to combat and refute those of rival groups. Third, the distribution of attributes between “matter” and “spirit” was an issue of intense concern in all these philosophies; the relations between the two entities seemed to be something upon which all cosmologies “had to” decide, and the boundaries between “matter” and “spirit” were treated as having particularly strong social significance.

Thus “contextualism” for Shapin is the study of natural philosophy “entirely in terms of its uses in specific historical contexts,” or, as his title suggests, its “social uses.”

In the next section of the essay Shapin wants to juxtapose this new contextualist approach, of which he is a member, against the historiographic theories of post-Koyréan “intellectualist” practice, which includes, he argues, Gerd Buchdahl, Henry Guerlac, P. M. Heimann, Robert Kargon, David Kubrin, J. E. McGuire, Ernan McMullin, P. M. Rattansi, and Richard Westfall. In short, Shapin concludes that while traditional intellectualist histories of science situate scientific thought in the seventeenth and eighteenth centuries firmly within the intellectual context of metaphysics and religion, the context of ideas, both in their formation and in their use, has not been treated adequately. At best, he argues, we have been given “footnote contextualism,” an “apparent stipulation that such context impinged peripherally or in some unspecified, but insignificant, way.” In other words, the intellectualist historiographic approach relegates the effects of social-political context on scientific ideas to footnotes and asides, therefore to an implicitly peripheral and unimportant role. Shapin disagrees and argues that in the contextualist historical research: “what we begin to see in work of this kind is a sensitivity to a variety of conceptions of nature distrubuted among different social groups. We see how divergent bodies of natural knowledge were used to further social interests and were produced in processes of social conflict.”

In the final sections of his essay, Shapin provides a contextualist interpretation of the “new science” of the early and mid-eighteenth century as a strategy reflecting its social-political uses. He maintains, for example, following M. Jacob, “where the Newtonian cosmology of the Boyle Lectures was developed partly as a defense of the Protestant succession and the court which underpinned the moral and social authority of the latitudinarian Low Church,” the hylozoist cosmology—in which outside, immaterial forces are unnecessary to move matter—of “freethinkers” such as John Toland “was the voice of conflicting social tendencies.” The latter were at odds with the Newtonians because they “perceived them to be ‘propagandizers for a science of God that would enhance the authority of ruling oligarchies and established churches.'”

Although M. Jacob’s thesis has received criticism, particularly from Christopher Wilde, who provides similar historiographic techniques to show an important English anti-Newtonianism of High Church divines, both work demonstrate that “‘dialectical’ processes of social conflict in the cultural domain may be needed to account for historical changes in dominant cosmologies.”

But intellectualists and the new contextualist can work together, according to Shapin. For example, there has been some major historiographic bridge-building between the two in accounting for Joseph Priestly’s natural philosophy. The work of J.G. McEvoy and J. E. McGuire have demonstrated that “Priestly was not embarked upon any ‘atheistical’ or ‘secularizing’ enterprise,” but a cosmology of “rational dissent,” one specifically committed to “undermining the authority of the state Church and justifying liberalism and toleration in religious matters.” Thus Priestly’s materialist monism becomes a “hierarchy-collapsing strategy.”

In conclusion Shapins lists three themes that emerge from social studies of uses of scientific knowledge in the seventeenth and eighteenth centuries. First it shows the important role for social interests in scientific change or in sustaining scientific accounts. Second, science is revealed to us only in some context of use; “science” is never disembodied—it is always put to use in some particular social context. And third, historians of science are revealed to be implicit anthropologists, considering “collective representations of nature…to be institutions inextricably bound up with the social affairs of the communities which generate and sustain them; they are explained by identifying the ‘social work’ the beliefs do in these communities.”

Finally, this anthropological perspective, according to Shapin, represents a non-deterministic sociology of scientific knowledge. “By emphasizing that cosmologies are constructed in the contexts of use, they replace the ‘automaton-actor’ of metaphysical-influence studies with an active, calculating actor whose intellectual products are crafted to further the variety of his interests.”

Our Pervasive Stories about Science

Shapin - The Scientific RevolutionIn an oft quoted sentence, Steven Shapin opens his The Scientific Revolution (1996) with dramatic flourish: “There was no such thing as the Scientific Revolution, and this is a book about it.” He begins his introduction with a brief historical survey, citing the scholarly opinion of generations past. A familiar cast appears. Koyré had judged the scientific revolution as a “profound intellectual transformation” and a “dissolution of an older worldview.” Likewise, Buttefield had said that the scientific revolution “outshines everything since the rise of Christianity,” reducing the Renaissance and Reformation to the “rank of mere episodes.” A. Rupert Hall also claimed that it was “an a piori redefinition of the object of philosophical and scientific inquiry.” These scholars would go on to influence and shape historical scholarship of the next generation. There was something truly “revolutionary,” “cataclysmic,” and “coherent” that occurred in seventeenth-century Europe, something that “irrevocably changed what people knew about the natural world and how they secured proper knowledge of that world.”

But his introduction Shapin also lists reasons why today’s historians of science, himself included, are reluctant to embrace such pronouncements. First, historians are no longer satisfied with treating ideas as if they were autonomous, disembodied, free-floating conceptions, and as a result have insisted on the importance of cultural and social context. Second, and related to the first, ideas ought to be understand in the context of human practices. And finally, it follows that historians now look more closely into the “who” of the scientific revolution, those who wrought such changes.

Claiming to take full account of recent scholarship about the period of the scientific revolution, he posits that science is a “historically situated and social activity and that it is to be understood in relation to the contexts in which it occurs.” He does not consider that there is “anything like an ‘essence’ of seventeenth-century science or indeed of seventeenth-century reforms in science.” He observes that important as developments in mathematical physics were in the seventeenth century, this does not provide a model adequate for explaining developments in every other area of science. For these reasons he rejects the possibility of providing a “single coherent story that could possibly capture all the aspects of science or its changes.”

In short, the historiographic notion of the scientific revolution is mistaken. The development of the modern scientific worldview was a complex process contested by many seventeenth-century practitioners (note that this is an altogether distinct argument than what I. B. Cohen and D. Lindberg have put forward): experimentalism was both advocated and rejected; mathematical methods were both celebrated and treated with doubt; mechanical conceptions of nature were seen both a defining proper science and as limited in their intelligibility and application; and the role of experience in making scientific knowledge was treated in radically different ways.

But like his predecessors, Shapin losses some nerve, claiming that his aim is not a full-scale rejection of the scientific revolution. For starters, many key figures in the late sixteenth and seventeenth centuries saw themselves as “modern.” Secondly, and quite simple, historians—like most of people—want to find meaning in history, we “want to know how we got from there to here.” The key, according to Shapin, is recognizing that “intellectual change occurred while at the same time recognizing that change is not necessarily linear or self-evident progress toward our modern way of thinking.” Shapin thus settles for the following understanding of the scientific revolution: “We can say that the seventeenth century witnessed some self-conscious and large-scale attempts to change belief, and ways of securing belief, about the natural world. And a book about the Scientific Revolution can legitimately tell a story about those attempts, whether or not they succeeded, whether or not they were contested in the local culture, whether or not they were wholly coherent.”

Shapin divides his book into three substantive chapters: “What Was Known?” “How Was It Known?” and “What Was the Knowledge For?” In “What Was Known?” Shapin gives an account of some of the major scientific advances , from Galileo to Newton, from cosmology to microscopy, from the mechanical philosophy to the mathematization of nature. It was Copernicus and Galileo who established a new cosmology. Boyle and Descartes popularized the new mechanical philosophy. And Kepler and Newton ushered in a mathematical framework for natural philosophy.

But Shapin also wants to divulge the complexity in what was known. Galileo’s discovery of sunspots, along with a body of other observations and theorizing, “profoundly questioned a fundamental Aristotelian distinction between the physics of the heavens and that of the earth.” According to that tradition, the sun, stars, and planets obeyed different physical principles than did those objects on earth. In their domains there was no change and no imperfection. Galileo was not simply documenting observational data from his telescope, he was undermining the “traditionally accepted belief that the sun was immaculately and immutably perfect.” Thus when some (careless) historians claim that Copernicanism demoted humans from their egocentric center, what heliocentrism actually did was wrest the immutable to the mutable, to an earthly existence which was regarded as miserable and corrupt.

Aristotelian physics also came into question. Aristotle and his followers believed that natural motion had a developmental character. “Bodies naturally moved so as to fulfill their natures, to transform the potential into the actual, to move toward where it was naturally for them to be.” In some sense, Aristotelian physics was modeled on biology and employed explanatory categories similar to those used to comprehend living things. Thus with Copernicus and Galileo the teleological and animistic features of the traditional physics of motion were rejected.

The framework that modern natural philosophers preferred was one that explicitly modeled nature on the characteristics of a machine. Descartes, for instance, announced that “there is no difference between the machines built by artisans in the diverse bodies that nature alone composes.” And of all mechanical constructions whose characteristics might serve as a model for the natural world it was a clock more than any other that appealed to many early modern natural philosophers. Kepler, for instance, described his aim as the attempt to “show that the machine of the universe is not similar to a divine animated being, but similar to a clock.” Boyle likewise wrote that the natural world was “as it were, a great piece of clockwork.” Thus Boyle, Kepler, Descartes and other mechanical philosophers recommended the clock metaphor as a philosophically legitimate way of understanding how the natural world was put together and how it functioned. But this mechanical account of nature was anything but atheistic. In fact, mechanical philosophy was used to defend monotheism, and was explicitly contrasted with the anthropomorphism and animism, or occultism, of much traditional natural philosophy.

The mathematization of reality was just as a complex process has its mechanization. Early modern natural philosophers turned to Pythagoras and especially Plato to legitimate a mathematical treatment of the world, quoting Plato’s dictum that “the world was God’s epistle written to mankind” and that “it was written in mathematical letters.” Thus Shapin concludes in the first chapter that there can be no “facile generalizations” about Copernicanism, mechanical philosophy, or the mathematization of nature.

In “How Was It Known?” Shapin deals with experience, experiment, and authentication. Among the topics covered are Bacon’s advocacy of a new method, Boyle’s pump experiments, observational methods, development of experimentalism, and the formation of the Royal Society. Shapin argues that the seventeenth century’s supposed emphasis on experience and observation over authority was not as clear-cut as banal versions of the scientific revolution have always insisted. Modernist rhetoric embracing a totally new and wholly rejecting the past does not adequately describe historical reality. The very identity and practice of early modern astronomy, for example, depended on observational data compiled by the ancients. Copernicus himself, and many of his followers, liked to argue that heliocentrism was in fact an ancient view, corrupted over the centuries, and only renewed or restored in modern times. Newton likewise believed that natural philosophy had been corrupted over generations, and that his life work would restore it to its original, pristine quality.

But what was said to be overwhelmingly wrong with existing natural philosophical traditions was its dependence on textual authority. “The proper object of natural philosophical examination,” Shapin writes, “was not the traditionally valued books of human authors but the Book of Nature.”

This is the root idea of modern empiricism, the view that proper knowledge of nature is derived from direct sense experience. But as Shapin is careful to note, both the practice of observation and the credibility of observation reports in the early modern period could be intensely problematic. “It is important to understand how precarious experience might be and how much work was required to constitute it as reliable.” Christian theology, for example, proclaimed that the senses of human beings following the Fall were utterly corrupt, and that reliable knowledge could not be trusted by such debased sources.

One way of resolving this problem has already been mentioned: one was to get ahead by going back, progress through restoration. Newton, for example saw his task as recovering the lost wisdom of the ancients, and he undertook painstaking philological studies to support this enterprise.

What kind of experience was to be sought? How was it reliably attained? And how was one to infer from experience to general principles about the natural order? As Shapin points out, “what counted in one practice as reliably constituted experience, and reliable inference, was commonly identified by another as insecure or unphilosophical.” Indisputable and universal conclusions require indisputable and universal premises. The testifying person might be lying or deluded; the instruments used might distort rather than merely observe the natural order of things; the events reported might be not ordinary but anomalous.

According to Shapin, many seventeenth-century practitioners developed a new and quite different approach to experience. Bacon, for example, argued that the condition for a proper natural philosophy was its foundation in a laboriously compiled factual register of natural history — a catalog, compilation, a collection of all the effects one observed in nature. Yet the emblematic feature of modern natural philosophical practice was that it relied for its empirical content not just on naturally available experience but also on experiments artificially and purposefully contrived to produce phenomenon that might not be observed in the normal course of nature.

This brings us to Shapin’s discussion of “controlling experience.” Bacon judged the ills of contemporary natural philosophy, and then proffered a set of rules for “careful and severe” examination. One rule was collection, thus justifying the programmatic “cabinets curiosities” then fashionable in gentlemanly circles throughout Europe. But perhaps most important rule, for Bacon and others, was proper method. Method was what made knowledge about the natural world possible. Despite the stress on direct sensory experience, Bacon argued that uninstructed senses were apt to deceive and that the senses needed to be methodically disciplined if they were to yield proper knowledge. Thus one can only arrive at proper knowledge through a disciplined or instructed mind. What is meant by “discipline” and “instructed”? It depended on the natural philosopher you asked. This is, according to Shapin, the fragmented knowledge-making legacies of the seventeenth century.

In the third and final chapter, “What Was the Knowledge For?” Shapin treats the cultural uses of natural knowledge. In an extended discussion of natural knowledge and state power, he considers Bacon’s views on the ways that natural philosophy could increase such power, which provides the context for his examination of the establishment of the Royal Society and the Académie des Sciences. He demonstrates the ways in which natural knowledge was used to reinforce religious belief and theology. He concludes by asserting that this contextualized understanding of early modern science “as the contingent, diverse, and at times deeply problematic product of interested, morally concerned, historically situated people” seems paradoxical, because it was the interests of such people that led to the modern separation between science and religion and between science and society.

In the end, what remains of the scientific revolution? According to Shapin, it was “a diverse array of cultural practices aimed at understanding, explaining, and controlling the natural world, each with different characteristics and each experiencing different modes of change.” Consequently, nothing remains here of the idea the Scientific Revolution. Shapin’s Scientific Revolution is not a critique of science. Rather, it is a critique of “pervasive stories we tend to be told about science.”

The “Scientific Revolution” as a Fifteenth- and Sixteenth-century Humanist Invention

Our discussion thus far has focused on the historiographic category of the scientific revolution as the invention of eighteenth-century thinkers. But some years ago David C. Lindberg had argued, in his “Conceptions of the Scientific Revolution from Bacon to Butterfield: A preliminary sketch,” D. C. Lindberg and R. S. Westman, Reappraisals of the Scientific Revolution (1990), that modern conceptions of the scientific revolution are actually an “outgrowth and continuation of historiographic traditions and European self-perceptions rooted in fifteenth- and sixteenth-century Italian humanism.” In works of Petrarch (1304-1374), Boccaccio (1313-1375), and others, for example, we see what would become the “standard humanist account, the decline and fall of Rome introduced a thousand-year period of cultural darkness and stagnation,” during which the classics succumbed to religious dogmatism under the “rude vulgarity of the scholastics.”

Petrarch found solace in the works of the ancients, seeing the return to antiquity among his contemporaries as ushering in the beginning of the new, improved age, a “rebirth.” Indeed, a number of authors saw in their “new” work a return to the “old.” This included Nicholaus of Cusa (1401- 1464), Marsilio Ficino (1433-1499), his associate Pico della Mirandola (1463-1494), Johann Reuchlin (1455-1522), Francesco Patrizi (1529-1597), Jean Bodin (1530-1596), Peter Ramus (1515-1572), and many more. “The forward movements of the Renaissance,” once wrote Frances A. Yates, “all derive their vigor, their emotional impulse, from looking-backwards.”

Sixteenth-century Protestant authors were also apt to see a connection between the return to ancient sources and the reformation of Christianity. Criticism of the institutional Catholic Church and an emphasis on the original Christian gospels promoted by sola scriptura called for a quest for “true Christianity,” a return to a pristine religion. For example, Jacques Lefèvre d’Etaples (1455-1536), John Calvin’s teacher and the man who paved the way for the Reformation in France, was a Christian humanist who advocated not only a reformation of religious life and the dissemination of the Bible in the vernacular, but also a return to the ancient teachings of Hermes Trismegistus and the Hermetic Traditon.

Thus when, in the course of the seventeenth century, the new science came in for appraisal, that appraisal was powerfully shaped by historical categories and terminology devised by Renaissance humanists. According to J. B. Bury (1861-1927) and R. F. Jones (1886-1965), seventeenth-century scholars repudiated antiquity for the “new philosophy,” advanced by the constant invocation of “the new” in their works, such as Kepler’s New Astronomy, Bacon’s New Organon, Galileo’s Two New Sciences and so on.

But Bury and Jones read these titles at face value. “Seventeenth-century attitudes toward antiquity,” writes Lindberg, “looked at as a whole rather than scoured for ‘proof texts,’ are more complex and nuanced, and far more positive in tone.”

In other words, Bury and Jones—and still many today—were deceived by appearances. Dan Edelstein has demonstrated that the seventeenth-century was not a quarrel between the Ancients and the Moderns; no, it was the formation of an idea—or more accurately, a narrative—of progress that thinkers like Voltaire, Condorcet and others constructed, and that later scholars took up without question. Voltaire, for example, in his Essay on the Manners and the Spirit of Nations (1747-1751) and his Age of Louis XIV (1752) aimed to “write a history of the human spirit, of manner and customs, based on the premise of indefinite progress.” Although he never offered a connected account of the development of natural philosophy, “his many passing comments added up to an influential interpretation” that saw history as stages of progress.

This optimism of progress reached a crescendo in Condorcet’s Esquisse d’un tableau historique des progrès de l’esprit hamain (1795), where he pronounced the triumph of Christianity as “the signal for the complete decadence of philosophy and the sciences.” Thus the progress we see in the seventeenth-century, according to Condorcet, was quite dramatic, revolutionary in fact. Key figures in his scheme are, of course, Copernicus, Galileo, Bacon, and Descartes.

What is remarkable about this scheme, says Lindberg, is its “unanimity of opinion.” “Everybody who addressed the question accepted a tripartite division of cultural history into ancient, medieval, and modern periods.” Antiquity was a glorious period of vast learning, only to be followed in the medieval period by total darkness, and now finally, in their own, modern period, the light of the ancients have returned, alongside the new lights of Copernicus, Galileo, Bacon, Descartes, and Newton.

This same schema of progress and periodization continued in historiographic developments of the nineteenth century. We see it, for example, in Auguste Comte (1798-1857), William Whewell (1794-1866) and others. According to Comte, all sciences pass inevitably through three stages: the theological, or fictitious, in which the human mind seeks essences and ultimate causes; the metaphysical stage, in which nature and abstract forces are substituted for divinity as the causes of phenomena; and finally the stage of “positive” science which the mind gives up the quest for absolute notions, the origin and destination of the universe, and the causes of phenomena and applies itself to the study of their laws.

For Whewell science proceeds by progressive generalization, from bare facts to general truths. Old truths are never truly overturn but are modified by subsequent discoveries and become a permanent part of the body of knowledge. According to Lindberg, Whewell’s purpose was to “establish his philosophy of science on the basis of historical investigation.” As such Whewell ventured a detailed history of the sciences—from Greek natural philosophy to the achievements of his own era. But predictably in his account the accomplishments of antiquity were followed by the long, stagnate, Middle Ages, a time of darkness, subservience, and dogmatism.

Lindberg then follows with an account of how medieval science was rehabilitated by scholars such as Pierre Duhem (1861-1916), Charles Homer Haskins (1870-1937), and Lynn Thorndike (1882-1965), and, as a result, for the first time in over three hundred years, the traditional schema and periodization came under serious historical attack.

But this new group of scholars encountered stiff opposition from the outset. The counterattack, led by Burtt, Koyré, and Butterfield, reasserted the significance of the scientific revolution, and thus the schema and periodization of a previous generation of scholars.

Therefore what distinguishes Lindberg’s account of the historiographic history of the scientific revolution from others, including I. Bernard Cohen’s, is his interest in the conceptions of sixteenth- and seventeenth-century science and natural philosophy. This conception of the progress of knowledge and a shared periodization of history is, according to Lindberg, a remnant of the humanist vision and not simply a creation of Enlightenment philosophes.

The “Scientific Revolution” as Narratology (Part 2)

In 1948 English historian Herbert Butterfield presented a series of lectures for the History of Science Committee at the University of Cambridge. There he argued that historians have overlooked an episode of profound intellectual transformation—one apparently comparable in magnitude to the rise of Christianity and that was deeply implicated in the very formation of the “modern mentality.” This episode was of course the Scientific Revolution. But as we have seen from previous posts, the idea of the “scientific revolution,” or, more precisely, “revolutions in science,” had its origins in eighteenth century thought.

Butterfield’s Cambridge lectures, published as The Origins of Modern Science: 1300-1800 (1949), were limned from a tradition of other twentieth-century historians and philosophers—scholars such as Pierre Duhem, Ernst Cassirer, E.A. Burtt, and, most importantly, Alexandre Koyré, who  regarded history as a special resource for illuminating the evolution and progress of science. In fact, it was Koyré who, in 1943, appraised the conceptual changes at the core of the “scientific revolution,” as “the most profound revolution achieved of suffered by the human mind.” It was so profound that human culture “for centuries did not grasp its bearing or meaning; which, even now, is often misvalued and misunderstood.”

Osler - Rethinking the Scientific RevolutionThese traditional narratives by early twentieth-century scholars have customarily focused on a list of canonical figures. These figures usually include Nicholas Copernicus, Tyco Brahe, Johannes Kepler, Galileo Galilei, Rene Descartes, Robert Boyle, and Isaac Newton. Margaret J. Osler’s (ed.) Rethinking the Scientific Revolution (2000) problematizes this canonical list. Questioning the canon leads, according to Osler, to inquire why and how it was formed in the first place. Rethinking the Scientific Revolution is in memory to Betty Jo Teeter Dobbs and Richard S. Westfall, best known for their studies on Isaac Newton and the scientific revolution in the seventeenth century.

Osler’s introduction frames and outlines the discussion in this illuminating work. She argues that one must seek balance, recognizing that intellectual change occurred while at the same time recognizing that change is not necessarily linear or self-evident progress toward our modern way of thinking. Historians, then, need to “recognize the role that their own assumptions play in their constructions of the past. There is no escaping them, but consciously acknowledging them staves off the temptations of claiming objectivity and progress.”

This new approach, Osler argues, is at odds with traditional accounts of the scientific revolution. From nineteenth-century positivist Ernst Mach, historians have told a story that stresses radical discontinuity of the scientific revolution from what came before. This is the story Westfall reiterates. This assumption also embodies an “essentialism” about science, according to which science it defined as unchanging and unambiguously identifiable in every historical era. This essentialism creeps into the interpretation of the scientific revolution itself: having defined the nature of the scientific revolution, historians, such as what H. Floris Cohen has done in his The Scientific Revolution, searched this event and explanations of it. Cohen, who undertook the daunting task of examining the entire historiography of the scientific revolution, as we have seen, nevertheless remained committed to both the reality of the revolution and to its historiographical utility.

Following the work of Quentin Skinner, Osler argues that taking agency seriously means using actors’ categories to account for the development of ideas. She means, in other words, to appropriate ideas of historical actors, to work within their particular social, ideological, and intellectual contexts. Osler argues that “future research must address the interests and concerns of subsequent generations, which created the perception that a scientific revolution occurred in the sixteenth and seventeenth centuries and then bequeathed it to us.”

Since historians of science have interpreted Newton’s work as the climax of the narrative they call the scientific revolution, this radical shift in understanding of the meaning of his work forces us to reconsider may of the received opinions about the nature of the scientific revolution.

The first essay by Betty Jo Teeter Dobbs, presented at the Annual Meeting of the History of Science Society in 1993, opens the discussion by stating her intention “to undermine one of our most followed explanatory frameworks, that of the scientific revolution.” Following I.B. Cohen’s work, Dobbs argues that the narrative of the scientific revolution was constructed in the eighteenth century, when natural philosophers selectively took up Newton’s physics and mathematics while ignoring his alchemical and theological views. Newton, according to Dobbs, is key: “as science accumulated more and more social prestige in the later eighteenth, nineteenth, and twentieth centuries, the image of Newton as principal cultural hero of the new science was handed on and further polished by succeeding generations of scientists and historians.” Indeed, Newton is “the hidden end toward which the whole narrative [i.e. the scientific revolution] is inexorably drawn.” Newton is not only the First Mover in historians’ account, he is also the Final Cause of the scientific revolution.

But this is not the Newton of history. Dobbs summarizes the central problem in a long passage, worth quoting at length:

But to my mind the issue of the proper interpretation of our scientific heroes has been the most pressing problem of all, a problem that was at least in part generated by the concept of the Scientific Revolution. I think the problem arises somewhat in this fashion: we choose for praise the thinkers that seem to us to have contributed to modernity, but we unconsciously assumed that their thought patterns were fundamentally just like ours. Then we look at them a little more closely and discover to our astonishment that our intellectual ancestors are not like us at all: they do not see the full implications of their own work; they refuse to believe things that are now so obviously true; they have metaphysical and religious commitments that they should have known were unnecessary for a study of nature; [and] horror of horrors, they take seriously such misbegotten ideas as astrology, alchemy, magic, the music of the spheres, divine providence, in salvation history.

Newton, alleged epitome of austere, scientific, mathematical rationality, pursued alchemy, apocalyptic theology, hermetism, and other occult practices. The problem, then, according to Dobbs, is a historiographic one. Newton’s “system was very quickly co-opted by the very -isms he fought [i.e. mechanism, materialism, deism, atheism], and adjusted to suit them. He came down to us co-opted, an Enlightenment figure without parallel who could not possibly have been concerned with alchemy or with establishing the existence and activity of a providential God.” In the end, Newton was not one of history’s all-time winners; rather, he is one of history’s great losers, “a loser in a titanic battle between the forces of religion and the forces of irreligion.”

In short, Dobbs calls historians of science to understand the presuppositions and assumptions of their historical actors rather than searching for anticipations of modern ideas in their thought.

Richard S. Westfall, on the other hand, wants to defend the traditional historiography. He argues that the historian’s task is not mere antiquarianism, “We are called to help the present understand itself by understanding how it came to be. We strive to find a meaningful order in the multifarious events of the past and thus, explicitly or implicitly, we pass judgment on the relative importance of events.”

In defending the historiography for which he was one of the most distinguished spokesmen, Westfall responds with reasserting the scientific revolution as “our central organizing idea,” because without it “our discipline will lose its coherence and, what is more, the cause of historical understanding take a significant set backward.” Thus Westfall, Osler argues in her introduction, is “fundamentally forward-looking, based on the assumption that what is interesting in the past are those developments that led to our present understanding of the world.” The crucial difference between Westfall and Dobbs, then, is that Westfall assumes that thinkers in the past are similar to us and that what is important for the historian is that aspect of the thinkers works that has survived until the present or that had led to our present way of looking at things.

Peter Barker agrees that Dobbs’ work “not only shifted the boundaries of Newton scholarship, she changed its center.” In his essay Barker wants to reexamine the “role of religion in the Lutheran response to Copernicus.” According to Barker the doctrine of the Real Presence, stipulated in the Augsburg Confession of 1530, article 10, that “Christ’s body and blood is truly present in, with, and under the bread and wine of the sacrament,” encouraged Lutherans to study any and all aspects of nature, for to do so was coming to know more about God. “For Luther and his followers, the Real Presence was distributed throughout all objects.”  These Lutherans became known as the “Wittenberg Astronomers,” and including Philipp Melanchthon (1497-1560), Joachim Rheticus (1514-1574), Andreas Osiander (1498-1552), Erasmus Reinhold (1511-1553), and Hilderich von Varel (1533-1599). In short, according to Barker, Lutherans expressed an early and strong interest in Copernicus’ work, even arranging for it publication. By the end of the sixteenth century, if you were a Protestant studying almost anywhere in German-speaking Europe, you would have been taught the Copernican system. By the time of Kepler’s education at Tübingen in the 1580s, for example, distinct positions on Copernicus’ work had emerged in northern Europe.

Another compelling essay in Rethinking the Scientific Revolution comes from Jan W. Wojcik’s “pursuing knowledge: Robert Boyle and Isaac Newton.” Wojcik is concerned with the different views of Boyle and Newton regarding the power and scope of human reason. “I think that the most important difference between these two natural philosophers is that they had dramatically different conceptions of God’s intentions concerning human understanding…to what can be known in both natural philosophy and theology, and how that knowledge can best be attained, exactly who can attain this knowledge, and when it might be learned.” Boyle, for example, was content to assent to mysteries, and that God never intended any human beings to a complete understanding of either nature or theological truths during this lifetime. Newton, on the other hand, insisted that God had revealed Christian doctrine with the intent that it be understood in a plain and natural sense, and that God in fact intended at least some individuals to achieve a complete understanding during this lifetime. Despite their differences, Wojcik argues, “it is clear that for both men theological concerns was an absolute priority.”

Moving into their more esoteric studies, Lawrence M. Principe discusses “the alchemy of Robert Boyle and Isaac Newton: alternate approaches and divergent deployments.” His title already suggests that Newton and Boyle—much like everything else—approached alchemy from different angles. According to Principe, those seeking the secrets of alchemy approach the subject through three kinds of sources: (1) the written record left by past adepti; (2) direct communication with living sources; and (3) laboratory investigation. Newton’s alchemical manuscripts, for example, consists of material not his own. “By far the great part of Newton’s alchemical output is in the form of transcriptions, translations, extracts, collations, and compendia of various alchemical authorities. By contrast, most of Boyle’s alchemical tracts are in fact gifts from their authors or copies made by others, rather than copies made specifically by Boyle.

Principe also examines what specific benefits these two students of alchemy expected to reap from such activity. In the case of Boyle, for example, the rewards were increased natural philosophical knowledge, medicinal preparations, and defense of orthodox Christianity. Boyle also expected to obtain the alchemical summum bonum, the secret of the preparation of the Philosopher’s Stone. Newton, on the other hand, expressed doubt in the real existence of the Philosopher’s Stone. Rather, for Newton the study of alchemy was a search for the existence and means of divine activity in the world. Thus an area of relative commonality between Boyle and Newton’s alchemical investigations lies in the service they believed alchemy could render to religion. Indeed, both men “sought alchemy as a corrective to an overly mechanized and potentially atheistic worldview.” Principe shows the ways in which alchemical ideas were important to Boyle and Newton, who are frequently considered to be mechanical philosophers.

By elucidating the similarities between Athanasius Kircher (1601-1680) and Isaac Newton, Paula Findlen raises the question why Newton was incorporated into the canon and Kircher was not. “Both were deeply religious men, committed to the study of nature as a sure path toward the revelation of divine wisdom, who began their academic careers as professors of mathematics. Both valued the learning of the ancients, searching ever further into pagan and Christian past in hope of illumination.” And no where is their commonality most clearly evident, says Findlen, than in their alchemical investigations. Thus “it is only the judgment of later generations that forged our distinction between genius and crackpot.”

In an essay by James G. Force, “the nature of Newton’s holy alliance between science and religion: from the scientific revolution to Newton (and back again),” he argues that we must cease to consider Newton as a cause for the final product of the scientific revolution, agreeing with Dobbs in large part in her astute moderation of the extreme generalities of the grand theorists of the scientific revolution. Newton was not some “protodeist who did not realize the paradoxical nature of his own thought”; rather, he is “a far more complex thinker for whom the Lord God of supreme dominion constitutes the key to understanding the nature of his particular ‘holy alliance’ between science and religion.”

J.E. McGuire, known for co-authoring the oft-cited “Newton and the ‘Pipes of Pan'” (1966), a fascinating and important study of Newton’s belief in the ancient wisdom of Neoplatonic and Pythagorean traditions, underscores in his essay, “the fate of the date: the theology of Newton’s Principia revisited,” the connection between Newton’s alchemy, theology, and natural philosophy. According to McGuire, “God is the ground of all being,” the “spiritual tonos,” the “structuring structure” of Newton’s cosmos, and therefore the Principia acts as a “conduit through which that structure is disclosed.”

While twentieth-century scientists and historians may value Newton’s contributions to mathematics and physics, religious fundamentalists, as Richard Popkins demonstrates in his “Newton and Spinoza and the Bible scholarship of the day,” are more impressed by his approach to biblical scholarship. But Newton, Baruch Spinoza (1632-1677) and Richard Simon (1638-1712) all took seriously the problems that had arisen in the collection, editing, and transmission of Scripture, and that Newton was not committed to claiming the inerrancy of the biblical texts.

Margaret C. Jacob concludes the collection by arguing that the “revolution in science” was constructed in the eighteenth century when natural philosophers selectively took up Newton’s physics and mathematics while ignoring his alchemical and theological views.

At this juncture it is worth mentioning the tireless, and more recent, work of Stephen D. Snobelen, whose main scholarly area of interest is Isaac Newton’s theological and prophetic writings. In several places, beginning with “Isaac Newton, heretic: the strategies of a Nicodemite,” The British Journal for the History of Science 32 (December 1999): 381-419; “‘God of Gods, and Lord of Lords’: the theology of Isaac Newton’s General Scholium to the Principia,” Osiris 16 (2001): 169-208; “‘A time and times and the dividing of time’: Isaac Newton, the Apocalypse and 2060 A.D.,”The Canadian Journal of History 38 (December 2003): 537-551; “To discourse of God: Isaac Newton’s heterodox theology and his natural philosophy,” in Science and dissent in England, 1688-1945, ed. Paul B. Wood (2004), pp. 39-65; “Lust, pride and ambition: Isaac Newton and the devil,” in Newton and Newtonianism: new studies, ed. James E. Force and Sarah Hutton (2004), pp. 155-181; “Isaac Newton, Socinianism and ‘the one supreme God’,” in Socinianism and cultural exchange: the European dimension of Antitrinitarian and Arminian Networks, 1650-1720, ed. Martin Mulsow and Jan Rohls (2005), pp. 241-293; “‘The true frame of Nature’: Isaac Newton, heresy and the reformation of natural philosophy,” in Heterodoxy in early modern science and religion, ed. John Brooke and Ian Maclean (2005), pp. 223-262; “‘Not in the language of Astronomers’: Isaac Newton, Scripture and the hermeneutics of accommodation,” in Interpreting Nature and Scripture in the Abrahamic Religions: History of a Dialogue, ed. Jitse M. van der Meer and Scott H. Mandelbrote. Vol. 1 (2008), pp. 491-530; “Isaac Newton, heresy laws and the persecution of religious dissent,” Enlightenment and Dissent 25 (2009): 204–59; “The Theology of Isaac Newton’s Principia mathematica: a preliminary survey,” Neue Zeitschrift für Systematische Theologie und Religionsphilosophie 52 (2010): 377–412; “The myth of the clockwork universe: Newton, Newtonianism, the the Enlightenment,” in The persistence of the sacred in modern thought, ed. Chris L. Firestone and Nathan Jacobs (2012), pp. 149-84; and “Newton the believer,” in The Isaac Newton Guidebook, ed. Denis R Alexander (2012), pp. 35-44, Snoblelen reveals Newton as a true Renaissance man, who spent decades delving in the secrets of alchemy and even longer studying the Bible, theology and church history. Leaving behind four million words on theology, “Newton was one of the greatest lay theologians of his age.” In his essays, Snobelen’s explores Newton’s theology, prophetic views and the interaction between his science and his religion.

Reading Newton in light of his own preoccupations rather than those of twentieth-century historians forces us, as Dobbs concluded in her essay, to reconsider many of the received opinions about the nature of the “scientific revolution.”