Historical Essays on the Encounter between Christianity and Science

Lindberg and Numbers - God and NatureFew subjects elicit stronger responses than the relationship between science and religion. How best to characterize this relationship? According to recent historical work, “No generalization has proved more seductive and tenacious than that of ‘conflict.'” Such generalizations, or assumptions, are widely prevalent in contemporary culture. In popular press, in journalism, and even among some academic circles, science and religion are either portrayed as engaged in warfare, or that their relationship is one of mutual independence.

Historians for some time now have questioned this “conflict” or “warfare” metaphor. In its place many recent historians have promoted what has been called the “complexity thesis,” the idea that individuals of the past did not think of the relationship between science and religion as a simplistic matter of conflict or concord, but rather exhibited diverse patterns of understanding.

Lindberg and Numbers - When Science and Christianity MeetThis message is reinforced in two books I have read this past week. The first is an earlier volume by David C. Lindberg and Ronald L. Numbers (eds.), God and Nature: Historical Essays on the Encounter between Christianity and Science (1986) and, more recently, and which has been quipped as the “Son of God and Nature,” their When Science and Christianity Meet (2003).  Both books distance themselves from the warfare metaphor by providing case studies, ranging from “science and the early church” to “the Scopes Trial in history and legend,” that clearly demonstrate the complex—and often positive—interaction between science and religion. These studies are excellent history, correcting many past distortions, and can provide the basis for future scholarship.

Lindberg and Numbers begin their God and Nature with what has now become common parlance among historians of science. John William Draper’s History of Conflict between Religion and Science (1874) and Andrew Dickson White’s A History of the Warfare of Science with Theology in Christendom (1896) are accused of setting the “terms of the debate.” Draper had “abandoned the faith of his father for rational theism”; “Draper’s quarrel was almost exclusively with Roman Catholicism”; “Draper regarded the Protestant Reformation, with its insistence on the private interpretation of Scripture, as the ‘twin sister’ of modern science.” White, for his part, “began writing on science and religion as part of an effort to discredit religious critics envious of the funds given to his new university in Ithaca”; but he made a sharp distinction between religion and theology: “Religion…often fostered science; theology smothered it.”

While militaristic language continued unabated into the twentieth century, a number of scholars were beginning to downplay, or completely redefine, the conflict between science and Christianity. These included Alfred North Whitehead, Micheal B. Foster, Robert K. Merton, A. Hunter Dupree, Charles C. Gillispie, Paul H. Kocher, Giorgio de Santillana, Richard S. Westfall, John Dillenberger, Owen Chadwick, James R. Moore, Neal C. Gillespie, Frank M. Turner, Margaret C. Jacob, and numerous others. This recent work in the history science, according to Lindberg and Numbers, seeks “not only to describe the relationship between science and religion that prevailed at a given time but to ask, ‘Who put it forward, who used it, and what (and whose) interests did it serve?'” And the view most encountered throughout the chapters of God and Nature is that the relationship between science and religion “defies reduction to simple ‘conflict’ or ‘harmony.'”

*  *  *

Religion and Science: A Brief Note

Although published more than twenty-years ago, the essays “Science and Religion” (1985) and “Beyond War and Peace: A Reappraisal of the Encounter between Christianity and Science” (1986), written by Ronald L. Numbers and David C. Lindberg respectively, still serve well as introductions to the science-religion debate; and particularly well in introducing to the reader the figures John William Draper (1811-1882) and Andrew Dickson White (1832-1918).

Both authors focus more on A.D. White, for “no work—not even John William Draper’s best-selling History of the Conflict between Religion and Science (1874)—has done more than White’s to instill in the public mind a sense of the adversarial relationship between science and religion.” Indeed, White’s two-volume History of the Warfare of Science with Theology in Christendom (1896) not only remains in print today, but has been translated into German, French, Italian, Swedish, and Japanese.

In 1869, when A.D. White was president of Cornell University, he lectured to a large audience at the Cooper Union in New York city on “The Battle-Fields of Science.” The lecture would be published the very next day by the New-York Daily Tribune. In that lecture White argued that

In all modern history, interference with Science in the supposed interest of religion—no matter how conscientious such interference may have been—has resulted in the direst evils both to Religion and Science, and invariably. And on the other hand all untrammeled scientific investigation, no matter how dangerous to religion some of its stages may have seemed, temporarily to be, has invariably resulted in the highest good of Religion and Science.

In the years following the Cooper Union address, A.D. White published, in 1876, a brief survey entitled The Warfare of Science, and from time to time the Popular Science Monthly published several articles by him on the “New Chapters in the Warfare of Science.” In 1896, he published his “magnum opus,” the History of the Warfare of Science with Theology in Christendom. “Along the way,” write Numbers and Lindberg, “he narrowed the focus on his attack: from ‘religion’ in 1869, to ‘ecclesiasticism’ in 1876…and finally to ‘dogmatic theology’ in 1896.” But the distinction was merely a rhetorical strategy, and as Numbers and Lindberg point out in a footnote, “the focus on dogmatic theology in his 1896 volumes seems to have been more of an afterthought—a misleading effort to distance himself from [John] William Draper.”

There follows a brief excursion on some of A.D. White’s claims in History of Warfare. Numbers focusing on the years between the American Revolution and Civil War, contrasts A.D. White with more recent scholarship, from Samuel Eliot Morison, Theodore Hornberger, Perry Miller, Donald Fleming, Henry F. May, Conrad Wright, Morgan B. Sherwood, James R. Moore, Richard Hofstadter, Walter P. Metzger, and many others, ranging from topics such as “Science and Religion in the Colonies,” “Science and Scripture in the Early Republic,” “The Darwinian Debates,” to “Science and Religion in Modern America.” Numbers concludes his survey that the “polemically attractive warfare thesis…[is] historically bankrupt.” A.D. White’s History of Warfare

assumes the existence of two static entities, ‘science’ and ‘religion,’ thus ignoring the fact that many of the debates focused on the questions of what should be considered ‘science’ and ‘religion’ and who should be allowed to define them; it distorts a complex relationship that rarely, if ever, found scientists and theologians in simple opposition; it celebrates the triumphs of science in whiggish fashion; and, all too often, it fails to treat religious ideas and institutions with the respect accorded to the realm of science

In Lindberg’s survey (written with Numbers), the focus is on early Christianity, the Copernican Revolution, the Galileo affair, the Darwinian debates, and the Scopes “monkey” Trial. The Church Fathers used Greek scientific knowledge in their defense of the faith, and thus occipied a prominent place in Christian worldview. In this sense, “science was thus the handmaiden of theology.” Copernicus was a Catholic church administrator from northern Poland, and a group of young Lutheran mathematical astronomers who worked under Philipp Melanchthon, Martin Luther’s reforming successor, welcomed his heliocentric astronomy. The Galileo affair was a multifaceted event, filled with opposing theories of biblical interpretation, personal and political factors, and must be seen within the context of the Reformation and the Council of Trent.  What is more, “all participants called themselves Christians, and all acknowledged biblical authority.” During the Darwinian debates, the clergy were among the first to embrace and popularize Darwin’s theory. Following James R. Moore, Numbers and Lindberg write, “the Darwinian debates created conflict, not between scientists and theologians, but within individual minds experiencing a ‘crisis of faith’ as they struggled to come to terms with new historical and scientific discoveries.”

If we “fail to escape the trap of assigning credit and blame,” conclude Numbers and Lindberg, “we will never properly appreciated the roles of science and Christianity in the shaping of Western culture; and that will deeply impoverish our understanding.”

Science and Religion Around the World

Brooke and Numbers - Science and Religion Around the WorldAs we have seen, one of the most prominent, persistent, and popular myths about science and religion emerged in the nineteenth century. John William Draper (1811-1882), author of History of the Conflict Between Religion and Science (1874), followed by Andrew Dickson White (1832-1918), author of The Warfare of Science (1876) and A History of the Warfare of Science with Theology in Christendom (1896) held that science and religion were inherently opposed and necessarily in conflict, thus ushering what was to become the widely current views of today.

John Hedley Brooke and Ron L. Numbers in Science and Religion Around the World (2011) assemble essays aimed at challenging this “warfare” narrative with interactions between science and early Judaism (Noah Efron), modern Judaism (Geoffrey Cantor), early Christianity (Peter Harrison and David C. Lindberg), modern Christianity (John Hedley Brooke), early Islam (Ahmad S. Dallal), modern Islam (Ekmeleddin İhsanoğlu), early Chinese religions (Mark Csikszentmihalyi), Indic religions (B.V. Subbarayappa), Buddhism (Donald S. Lopez Jr.), African religions (Steven Feierman and John M. Janzen), including a chapter on “unbelief” (Bernard Lightman), and an comprehensive conclusion, bringing together previous chapters and distilling a “geography of science-religion relations” (David N. Livingstone).

The book opens with the Abrahamic traditions. Noah Efron claims that “there has been no single, enduring Jewish attitude toward nature and its study. In each age and locale, a mix of theological, social, and practical concerns determined how large a role natural knowledge would take in Jewish intellectual life and how creative and original the contributions of Jews would be.” Efron traces this ambivalence in early Judaism’s attitude toward the natural world in the Hebrew Bible, Talmud, and writings in the Middle Ages.  Although the “Hebrew Bible records little about the nature of the cosmos,” the earth was a different matter. “Ancient Israelites,” Efron writes, “sought to divine the pattern behind the animals and plants they came across.” This is evident, he says, in the rule of kashrut—of what is prescribed to eat and what is proscribed.

Other prohibitions, against medicine, astrology, and magic, were not always followed. Astrology in particular found “purchase in ancient Hebrew culture.” Some scholars were impressed with the distinct elements of Hebrew tradition, such as Georg Wilhelm Friedrich Hegel, who observed that the Israelite religion altered the very nature of nature itself: “Nature [in the Old Testament] is now degraded to the condition of something powerless…it is made a means.” More recent commentators have also argued that the Bible desacralized nature, stripping it of the inherent and independent forces that pagan cultures had attributed to it.

Composed over hundreds of years and across thousands of miles, the Palestinian and the Babylonian Talmud reveal interesting tidbits of the cultures that produced them. Mathematics and astronomy, for example, served many practical ends because of its relevance in determining religious feasts and Sabbaths. There are also incidental references to illness and cure, disease and medicine. But as Efron notes, “the Talmud, like the Bible before it, served as a source for all of these attitudes toward nature and none of them.” The Talmud prohibits magic and sorcery, and physicians and surgeons were often treated with suspicion within its pages.

In the Middle Ages, we find intermittent Jewish cooperation in science and philosophy with Christians and Muslims. Particularly, Jews “found a place in Arabic mathematics, natural philosophy, and medicine. Isaac ben Solomon Israeli (ca. 855-955),  Sa‘adya  ben  Yosef
al-Fayyūmī (882-942), Abraham Bar Hiyya (d. ca. 1145), Abraham ibn Ezra (1089-1167) were known by contemporaries as enthusiasts for natural philosophy. They were not without critics, however.  Both Judah Halevi (ca. 1075-1141) and Moses ben Maimon (1135-1204) rejected astrology, the former warning: “Let not Greek wisdom tempt you, for it bears flowers only and no fruit.” The latter, known more commonly through his Latin name, Maimonides, “propounded a limited sort of natural theology, in which nature—God’s handiwork—bears testimony to God’s power. At the same time, he insisted that humans were incapable of achieving positive knowledge of God’s essence,” thus restricting man’s ability to know with certainty anything about the natural world. “Maimondies,” writes Efron, “would be an inspiration and a prooftext for Jewish scholars writing about natural philosophy for generations to follow.”

In the early modern period, Jews like David Gans (1541-1613), Joseph Solomon Delmedigo (1591-1655), Tobias Cohen (1652-1729), Jacob ben Isaac Zahalon (1630-93), David Nieto (1654-1728), Jacob Hamiz (d. ca. 1676) embraced natural philosophy, in part because they saw it as a sort of ecumenical wisdom, and, in part, because they recognized in nature traces of God’s handiwork.

Transitioning to the modern period of Jewish-science relations, “Jews continued to find science intertwined in complex patterns with their own identities.” In the first part of his essay, Geoffrey Cantor focuses on Sephardi and Ashkenazi Jews following the scientific revolution, relaying Jewish anxieties about natural philosophy possibly supplanting attention to Torah study. While the “Jewish enlightenment,” or the Haskalah, its proponents being maskilim (“those who possess understanding”) emerged in the late eighteenth century, its most eminent exponents being the self-proclaimed messiah Sabbatai Zevi (1626-76), Aaron Gumpertz (1723-70), Moses Mendelssohn (1729-86), Mordechai Gumpel Schnaber (1741-97), it peaked during the final two decades of the century, when many rabbis condemned it for fear that it would “erode traditional Jewish observance and that they would lose influences over their congregations.”

Cantor also surveys a spectrum of Jewish responses to Darwin, emphasizing the diversity of views in the Jewish tradition. English naturalist of Sephardi descent Raphael Meldola (1849-1915) “fell into the ranks of Darwinism.” Torah and Talmud scholar Naphtali Levy (d. 1894) wrote a book which argued that “Jewish thought and Darwin’s theory of evolution were in harmony with one another.” Enthusiasm for Darwin’s theory is also found among a small number of nineteenth-century rabbis, including Abraham Isaac Kook (1865-1935), the first Ashkenazi Chief Rabbi of Israel. Others, however, took the opposite view, such as Abraham Geiger, a leading reform rabbi in Germany, who rejected evolution in the 1860s because of “the gap he envisaged between humans and animals,” or Menachem Schneerson (1902-1994), who once told a “wavering student not to overrate the claims of science because it possesses a very limited factual base.”

Cantor closes his essay with a synopsis of “Jews in the Modern Scientific Community,” from Nobel Prize-winning physicist Albert Abraham Michelson (1852-1931), Manhattan Project director J. Robert Oppenheimer (1904-1967), sociologist Robert K. Merton (1910-2003), Albert Einstein (1879-1955), another Nobel Prize-winning physicist Steven Weinberg (b. 1933), Jewish biologists Robert Pollack (b. 1940), Stephen Jay Gould (1941-2002), and Richard Lewontin (b. 1929), to Austrian neurologist and psychoanalyst Sigmund Freud (1856-1939). One wonders, however, in selecting these “Jewish” actors, if family descent is a sufficient reason for their classification as “Jews.” Furthermore, in saying that there have never been an “antievolutionist movement among Jews comparable with the very hostile creationist opposition by some Christians and Muslims,” Cantor seems to have forgotten the recent theatrical release of Expelled! No Intelligence Allowed (2008), written, narrated, and hosted by Jewish actor and former Nixon/Ford presidential speechwriter, Ben Stein, which leans heavily on Jewish intelligent design theorists and/or creationists.

Turning to Christianity, Peter Harrison, David Lindberg, and John Brooke record “both opposition and encouragement between Christianity and science.” Beginning with the “advent of Christianity as an organized religion,” to the Patristic period, Middle Ages, and Reformation, Harrison and Lindberg demonstrate that there is abundant “encouragement” between Christianity and science. However Christianity’s cultured dispersers have obscured the evidence, “scientific activity flourished during a Middle Ages that was dominated by ecclesiastical institutions and an intellectual culture that was oriented primarily toward theology.” Later, the idea that science was a “handmaiden” to theology was the guiding principle of figures such as Isaac Newton and Robert Boyle. Beyond this, Francis Bacon  suggested that natural philosophy was itself a form of religious activity. Indeed, Johannes Kepler once wrote, “I wished to be a theologian; for a long time I was troubled, but now see how God is also praised through my work in astronomy.” Harrison and Lindberg conclude  that relations between science and Christianity from the Patristic period and through the Middle Ages were, for the most part, “peaceful” and that “Western Christendom actually provided the institutional and intellectual setting that made possible the emergence of modern science.”

Brooke begins his chapter on “Modern Christianity” by reminding the reader that there is no single “Christian tradition.” The Latin West, the Eastern Orthodox, the Protestant Reformation, and the ensuing multifarious traditions and denominations stemming from it,  reveal numerous forms of Christian life, worship, and church governance. Thus in evaluating the relevance of scientific culture to the Christian faith it is often necessary to distinguish opinions from particular traditions, and beyond this to particular individual thinkers, as in the case of the famous controversy between Gottfried Leibniz (1646-1716) and Samuel Clarke (1675-1729) in the early eighteenth century. Most often, scientific activity had been “defended on the ground that it furnished evidence for the power and wisdom of God.” In this sense seventeenth-century science was sanctioned by Christian theology. During the eighteenth century “many attacks on the Christian faith were launched”; not by science, however, but by biblical criticism and certain radical philosophies.

But perhaps the biggest intellectual threat to Christianity came during the nineteenth century—”not only from the historical sciences of geology and evolutionary biology but also from the practice of history itself.” David Friedrich Strauss’ Life of Jesus (1835), for example, argued that the miracles of Christ were a fabrication of the early church, who used Jewish ideas about what the Messiah would be like in order to express the conviction that Jesus was indeed the Messiah. Bishop John Colenso of Natal published a controversial collection of Essays and Reviews (1860) in which several Anglican clergy argued that “the Bible must be read like any other book—a product of its time and therefore fallible in its cosmology.”

During the second half of the nineteenth century, both geologists and evangelicals, devised elaborate attempts to harmonize the new science with Scripture. Thomas Chalmers (1780-1847), William Buckland (1784-1856), Edward Hitchcock (1793-1864), and Hugh Miller (1802-56) were some of the most well known. But by the end of the century, “it would be rare to find theological references in technical scientific treatises.” This transformation was not caused by Darwin’s theory of evolution by natural selection—but it certainly served as a catalyst. Figures such as Thomas Henry Huxley (1825-95) and John Tyndall (1820-93) used it as a foil in their aggressive attacks against the clergy and the pretensions of theology. It was in this way that Darwin’s naturalistic account became a divisive force within Christendom. Perhaps weary from such aggressive polemics in the previous century, during the twentieth century “there were serious deterrents to combining Christian theology with scientific discourse.” Karl Barth (1886-1968) rejected natural theology as misguided and presumptuous. But Christian apologists were tempted by new scientific discoveries, particularly the indeterminacy of quantum mechanics, Big Bang cosmology, and the fine tuning underlying the laws of physics. The spread of intelligent design theory, Brooke concludes, “is indicative of a widespread popular disenchantment with liberal values associated with Darwinism and especially with the materialism superimposed on it.”

The chapters on “Early Islam” and “Modern Islam” offer a spirited perspective on the complex relation of Islam and the natural sciences. Ahmad Dallal argues that “Arabic science did more than simply preserve the Greek scientific legacy and pass it to its European heirs.” Because the legacy came in a package, including science and philosophy, astrology and astronomy, medicine and alchemy, “Muslims, for several centuries, tried to sort out the part that contradicted their faith.” This process came to be known as the “Islamization of science.” Key contributions of Arabo-Islamic science came through astronomy, mathematics, optics, and medicine. Dallal challenges the assertion that “the lack of institutional support in Muslim societies for the rational sciences is responsible for their marginalization and eventual demise.” He also challenges traditional accounts of al-Ghazali, who is “often considered an enemy of science and one of the main causes of its decline” in Islamic culture. Dallal examines Qur’anic references to nature, concluding that “religious knowledge and scientific knowledge are each assigned to their own compartments,” thus justifying “the pursuit of science, and even a limited use of scientific discourse in commenting on the Qu’ran.” Dallal ends his chapter with some brief comments on the intersection of science and religion in Islamic speculative theology, or kalam. “One of the consequences of the Islamization of science in medieval Muslim practice,” he writes, “was the epistemological separation of science and philosophy and thereby the separation of religion and science.”

Ekmeleddin İhsanoğlu extends this discussion into the relations between Islam and science to the modern period, describing the “selective transfer of ‘European’ science” to the Ottoman Empire, when Ottomans pursued geography, cartography, astronomy, technology, and even alchemy. His account is infused with the works of little-known figures, such as Piri Reis (1465-1553), Seydi Ali Reis (d. 1562), Matrakçı Nasuh (1480-1564), Abu Bakr al-Dimashqi (d. 1691), Ibrahim Müteferrika (d. 1745), Ibrahim Hakki of Erzurum (d. 1780), and many others. But in this montage of names, one wonders about the inclusion of some, such as Müteferrika, who “had once been a priest” and became “a Hungarian convert to Islam.” His voluntary affiliation with Islam may make him something other than a representative Muslim. This is the same problem with Efron’s inclusion of avowed atheists as “Jewish” actors in modern Jewish-science relations.

İhsanoğlu’s most interesting discussion in this chapter is the impact of Darwin’s evolutionary theory on Ottoman intellectuals. First, he says, the theory reached Ottoman intellectuals by way of the French, which often favored Lamarck over Darwin. Evolutionary theory was viewed, moreover, through Ludwig Büchner’s materialistic ideas in Kraft und Stoff (1855). Unlike Europe, Istanbul began with evolutionary and social Darwinist thought rather than biological Darwinism. Then there is Ahmet Midhat’s (1844-1912) translation of John William Draper’s Conflict between Religion and Science, in four volumes, 1895, 1897, and 1900. Midhat wanted to assure young Muslims that Draper’s arguments concerning Catholicism did not hold true for Islam, so he included long supplements in each volume. In the twentieth century, discord appeared between science and Islam. But, according to İhsanoğlu, the discord was “between Islam and modern philosophical currents like positivism, naturalism, and social Darwinism, which challenged religion and the belief in God.” There is, however, only scant reference to the rise of Islamic anti-evolutionary sentiment in the late twentieth century, the focus being only on Iranian University professor Seyyed Hossein Nasr, who has publicly dismissed evolution “as an ideology and not as a scientific theory which has been proven.”

The following chapters explore the relation of science and religion in Chinese, Indic, and African religions. Particularly interesting is Mark Csikszentmihalyi’s claim that Confucianism, Daoism, and Buddhism, and their wider religious-cultural matrix, influenced the development of natural sciences in different ways. B.V. Subbarayappa classifies Hinduism, Jainism, and Buddhism as “Indic religions,” casting traditional Indian astronomy, mathematics, medicine, and biological ideas as developing within or because of these religions. Indian astronomy, for example, “was essential for determining the timing of rituals and sacrifices…the construction of several forms of sacrificial altars…determination of celestial events such as solstices, when sacrifices had to be performed.” It is often said that a particular feature of Indian culture is a peaceful co-existence between science and its religious traditions. But this is, of course, not the whole story. Intriguing is Subbarayappa mention of Jawaharlal Nehru’s (1889-1964) convocation address at Allahabad University in 1946, where he expressed the conviction that “Science and Science alone could solve the problems of hunger and poverty, of insanitation and illiteracy, of superstition and deadening custom and tradition, of vast resources running to waste, of a rich country inhabited by starving people,” thus indicating a functional approach to science and technology as a guide to greater material prosperity. Despite the many claims that “Buddhism is most compatible with modern science” than any other religion, writes Donald Lopez Jr., Buddhism has existed in many forms and manifestations, and during the nineteenth century, attempts by Western scholars to reconstruct the life of Siddhartha Gautama, the Buddha, and his teachings, led to portrayals that would have been unrecognizable to Asian adherents. During the “colonial encounter,” where Europeans began investigating Buddhism in its original languages, Buddha was “exported back to Asia and sold to Asian Buddhists, who sent him into battle against the Christians.” Lopez cites Buddhists who see Buddhism as a science of the mind, “not only…compatible with modern science but superior to it.” “Once declared to be a science,” he writes, “Buddhism—condemned as a primitive superstition both by European missionaries and by Asian modernists—jumped from the bottom of the evolutionary scale to the top, bypassing the troublesome category of religion altogether.” He concludes that in “each of its periods of conjunction with science, a different form of Buddhism has been called upon to play its part.” Finally, Steven Feierman and John M. Janzen show that colonial African societies integrated science and spirits, “the idea of technical actions that have a powerful symbolic valence.” The efficacy of such technical processes as the smelting of iron, for example, “depended on the moral context in which they were performed.” A similar emphasis on moral and symbolic ways of constituting technical acts are also found in agricultural practices and the treatment of diseases through a combination of ancestral, holistic cosmologies and biomedical knowledge. Feierman and Janzen clearly demonstrate that examining science-religion relations in societies other than our own can be even more challenging.

Perhaps the most fascinating, and important, chapters—at least from this reader’s perspective— are the last two. Bernard Lightman covers some of the same material as Harrison, Lindberg, and Brooke, but focuses on a history of “unbelief.” Richard Dawkins, that enfant terrible of the so-called “New Atheism,” argues that Darwin’s theory of evolution by natural selection is “the ultimate scientific consciousness-raiser” for it “shatters the illusion of design within the domain of biology, and teaches us to be suspicious of any kind of design hypothesis in physics and cosmology as well.” It was Darwin, he wrote in The Blind Watchmaker (1996), that “made it possible to be an intellectually fulfilled atheist.” In short, “atheism lies at the heart of modern science.”

But according to Lightman, such an account of unbelief is far too simplistic. Not only were there a multiplicity of national contexts in which unbelief developed, its takes “more than just a new scientific theory to make unbelief acceptable to members of the intellectual elite and the public.” The social respectability of unbelief is crucial here. Lightman begins his account with Newton’s consent to Richard Bentley (1662-1742) and Samuel Clarke (1675-1729) to use his science for social purposes, “to shore up the newly reconstituted monarchy and the established church as the bulwarks of order and stability.” Newtonianism was therefore used as a “defense of the status quo.”

This alliance between Newtonian science and religious belief is nowhere more evident than in the career of Voltaire (1694-1778). Committed to a strongly providential deism, Voltaire “drew extensively on Newtonian science to undermine forms of unbelief based on Cartesian science and Spinozism.” In his Letter Concerning the English Nation (1733) and Elements of Sir Isaac Newton’s Philosophy (1738) he aimed to demonstrate that Newtonianism curbed materialism and Spinozism far more effectively than Cartesianism, and to defend Newton against accusations of atheism. Making Newton’s natural philosophy intelligible to a wider public, Voltaire made Newtonian science a “bulwark of Christianity against atheism not only in England but…throughout much of Europe.”

Others would take Newtonianism in the completely opposite direction. Radical enlightenment thinkers such as Denis Diderot (1713-84), Claude Adrien Helvétius (1715-71), Baron d’Holbach (1723-89), and others used Newtonianism as a foil in their cause for republicanism, personal liberty, equality, and freedom of thought and expression. Soon these thinkers would reject the British political system, along with the Newtonianism closely associated with it. Lightman credits Diderot and d’Holbach in particular as key players in the history of unbelief. Diderot, collaborating with Jean d’Alembert (1717-83), began producing the Encyclopédie (1751-72) as an “antidote to English cultural and intellectual hegemony.” D’Holbach’s System of Nature or Laws of the Moral and Physical World (1768) wanted to distinguish between Newton the natural philosopher and Newton the religious thinker. The “God of Newton,” he declared, “is a despot.” Newton, “whose extensive genius has unraveled nature and its laws has bewildered himself as soon as he lost sight of them.” According to d’Holbach, when Newton “left physics and demonstration, to lose himself in the imaginary regions of theology,” he was “no more than an infant.”

The French atheists were quickly criticized and condemned by British thinkers. The attitudes and reactions of Joseph Priestly (1733-1804), David Hume (1711-1776), and Edward Gibbon (1737-94) are nicely summed up in Horace Walpole’s (1717-87) pronouncement: “the philosophes—are insupportable, superficial, overbearing, and fanatic: they preach incessantly, and their avowed doctrine is atheism; you would not believe how openly—Don’t wonder, therefore, if I should return a Jesuit.” The attempt to link unbelief with Newtonian science was not widely received.

It was “only after the troubled social and political unrest of the 1830s and 1840s had passed in Britain and prosperity returned,” writes Lightman, that agnosticism was born. Ironically, the rapid growth of evangelicalism at the start of the nineteenth century gave way to a gradual drop in the rate of church attendance by mid-century. There were many concerns, about the absence of the working classes from church, a middle class that ceased to attend regularly, and a rejection of the social and moral authority of the church. More than anything else, the Victorian crisis of faith was a “moral rather than an intellectual matter.”

At the intellectual front, although Darwin did not attempt to construct a link between evolution and unbelief, others definitely—and defiantly—tried. These “architects of evolutionary agnosticism,” as Lightman calls them, consisted of Thomas Henry Huxley, Herbert Spencer (1820-1903), John Tyndall, William Kingdon Clifford (1845-79), Francis Galton (1822-1911), and others. It is important to note that unlike contemporary unbelievers, these evolutionary agnostics rejected atheism and offered a less militant version of unbelief. Huxley’s efforts, more than any of the others, “led to the public acceptance of agnosticism as a form of unbelief.” He advocated that science and religion were separate spheres and had to be kept apart from each other; in short, a declaration of the independence for scientists operating in a space dominated by the established Anglican Church. He even coined catchy names for this new vision: “scientific naturalism” and “agnosticism.” And by distinguishing agnosticism from atheism or materialism, he presented unbelief as both intellectually viable and eminently respectable.

Although Huxley averred that the respectable agnostic was not to be confused with the atheist, when evolutionary theory was applied to other disciplines, particularly anthropology, it proved to be corrosive to religious faith. The anthropological writings of Edward Burnett Tylor (1832-1917) and James George Frazer (1854-1941), for example, shows how the social sciences, when influenced by evolutionary theory, were used to understand religion in a way that was inimical to religion itself. Evolutionary theory was also applied in Spencer’s reconstruction of a new system of nature. After deducing that law of evolution was a unifying truth, Spencer “offered empirical proof drawn from astronomy, geology, biology, psychology, and sociology that ‘the Cosmos, in general and in detail, conforms to this law.'” In other words, all phenomena were subject to the evolutionary process.

In his conclusion Lightman states that it was a “post-9/11 environment” that “spawned the ‘New Atheists,’ an aggressive and militant group far more vocal” than their agnostic and unbelieving predecessors.

David N. Livingstone’s concluding essay brings together the previous chapters and articulates a series of imperatives: “pluralize, localize, hybridize, politicize.” The essays in this volume “disturb the presumption of a singular relationship between science and religion”; they “advertise complexity in science-religion discourses at different points in time and in different locations.” In pluralizing the discussion, these chapters reveal multiple “religions” and “sciences,” neither “tidily segregated” nor identical, but “delightfully” complicated. “The singularity that ordinarily attends public discussion of the subject needs to replaced by a recognition that it is more helpful to think in terms of the encounter between sciences and religious traditions.” In localizing the encounters between religions and sciences, social geography has been absolutely necessary. In hybridizing science, unbelief, and varied religious traditions, they have integrated, intertwined, and amalgamated in “cross-cultural syntheses.” This “impurity” writes Livingstone, alerts us to the ways “science” and “religion” have been mobilized in the interests of cultural politics. “All this serves to remind us that ‘science and religion’ are always embedded in wider socio-political networks and their relationship is conditioned by the prevailing cultural arrangements.”

In addressing the “relationship between science and religion,” the authors in this volume “pluralizes the entire enterprise,” identify “cross-cutting themes,” highlight “the role of cultural politics,” and attend to “difference and divergence from time to time and place to place.”

The “Scientific Revolution” as a Fifteenth- and Sixteenth-century Humanist Invention

Our discussion thus far has focused on the historiographic category of the scientific revolution as the invention of eighteenth-century thinkers. But some years ago David C. Lindberg had argued, in his “Conceptions of the Scientific Revolution from Bacon to Butterfield: A preliminary sketch,” D. C. Lindberg and R. S. Westman, Reappraisals of the Scientific Revolution (1990), that modern conceptions of the scientific revolution are actually an “outgrowth and continuation of historiographic traditions and European self-perceptions rooted in fifteenth- and sixteenth-century Italian humanism.” In works of Petrarch (1304-1374), Boccaccio (1313-1375), and others, for example, we see what would become the “standard humanist account, the decline and fall of Rome introduced a thousand-year period of cultural darkness and stagnation,” during which the classics succumbed to religious dogmatism under the “rude vulgarity of the scholastics.”

Petrarch found solace in the works of the ancients, seeing the return to antiquity among his contemporaries as ushering in the beginning of the new, improved age, a “rebirth.” Indeed, a number of authors saw in their “new” work a return to the “old.” This included Nicholaus of Cusa (1401- 1464), Marsilio Ficino (1433-1499), his associate Pico della Mirandola (1463-1494), Johann Reuchlin (1455-1522), Francesco Patrizi (1529-1597), Jean Bodin (1530-1596), Peter Ramus (1515-1572), and many more. “The forward movements of the Renaissance,” once wrote Frances A. Yates, “all derive their vigor, their emotional impulse, from looking-backwards.”

Sixteenth-century Protestant authors were also apt to see a connection between the return to ancient sources and the reformation of Christianity. Criticism of the institutional Catholic Church and an emphasis on the original Christian gospels promoted by sola scriptura called for a quest for “true Christianity,” a return to a pristine religion. For example, Jacques Lefèvre d’Etaples (1455-1536), John Calvin’s teacher and the man who paved the way for the Reformation in France, was a Christian humanist who advocated not only a reformation of religious life and the dissemination of the Bible in the vernacular, but also a return to the ancient teachings of Hermes Trismegistus and the Hermetic Traditon.

Thus when, in the course of the seventeenth century, the new science came in for appraisal, that appraisal was powerfully shaped by historical categories and terminology devised by Renaissance humanists. According to J. B. Bury (1861-1927) and R. F. Jones (1886-1965), seventeenth-century scholars repudiated antiquity for the “new philosophy,” advanced by the constant invocation of “the new” in their works, such as Kepler’s New Astronomy, Bacon’s New Organon, Galileo’s Two New Sciences and so on.

But Bury and Jones read these titles at face value. “Seventeenth-century attitudes toward antiquity,” writes Lindberg, “looked at as a whole rather than scoured for ‘proof texts,’ are more complex and nuanced, and far more positive in tone.”

In other words, Bury and Jones—and still many today—were deceived by appearances. Dan Edelstein has demonstrated that the seventeenth-century was not a quarrel between the Ancients and the Moderns; no, it was the formation of an idea—or more accurately, a narrative—of progress that thinkers like Voltaire, Condorcet and others constructed, and that later scholars took up without question. Voltaire, for example, in his Essay on the Manners and the Spirit of Nations (1747-1751) and his Age of Louis XIV (1752) aimed to “write a history of the human spirit, of manner and customs, based on the premise of indefinite progress.” Although he never offered a connected account of the development of natural philosophy, “his many passing comments added up to an influential interpretation” that saw history as stages of progress.

This optimism of progress reached a crescendo in Condorcet’s Esquisse d’un tableau historique des progrès de l’esprit hamain (1795), where he pronounced the triumph of Christianity as “the signal for the complete decadence of philosophy and the sciences.” Thus the progress we see in the seventeenth-century, according to Condorcet, was quite dramatic, revolutionary in fact. Key figures in his scheme are, of course, Copernicus, Galileo, Bacon, and Descartes.

What is remarkable about this scheme, says Lindberg, is its “unanimity of opinion.” “Everybody who addressed the question accepted a tripartite division of cultural history into ancient, medieval, and modern periods.” Antiquity was a glorious period of vast learning, only to be followed in the medieval period by total darkness, and now finally, in their own, modern period, the light of the ancients have returned, alongside the new lights of Copernicus, Galileo, Bacon, Descartes, and Newton.

This same schema of progress and periodization continued in historiographic developments of the nineteenth century. We see it, for example, in Auguste Comte (1798-1857), William Whewell (1794-1866) and others. According to Comte, all sciences pass inevitably through three stages: the theological, or fictitious, in which the human mind seeks essences and ultimate causes; the metaphysical stage, in which nature and abstract forces are substituted for divinity as the causes of phenomena; and finally the stage of “positive” science which the mind gives up the quest for absolute notions, the origin and destination of the universe, and the causes of phenomena and applies itself to the study of their laws.

For Whewell science proceeds by progressive generalization, from bare facts to general truths. Old truths are never truly overturn but are modified by subsequent discoveries and become a permanent part of the body of knowledge. According to Lindberg, Whewell’s purpose was to “establish his philosophy of science on the basis of historical investigation.” As such Whewell ventured a detailed history of the sciences—from Greek natural philosophy to the achievements of his own era. But predictably in his account the accomplishments of antiquity were followed by the long, stagnate, Middle Ages, a time of darkness, subservience, and dogmatism.

Lindberg then follows with an account of how medieval science was rehabilitated by scholars such as Pierre Duhem (1861-1916), Charles Homer Haskins (1870-1937), and Lynn Thorndike (1882-1965), and, as a result, for the first time in over three hundred years, the traditional schema and periodization came under serious historical attack.

But this new group of scholars encountered stiff opposition from the outset. The counterattack, led by Burtt, Koyré, and Butterfield, reasserted the significance of the scientific revolution, and thus the schema and periodization of a previous generation of scholars.

Therefore what distinguishes Lindberg’s account of the historiographic history of the scientific revolution from others, including I. Bernard Cohen’s, is his interest in the conceptions of sixteenth- and seventeenth-century science and natural philosophy. This conception of the progress of knowledge and a shared periodization of history is, according to Lindberg, a remnant of the humanist vision and not simply a creation of Enlightenment philosophes.