The “Scientific Revolution” as Narratology (Part 2)

In 1948 English historian Herbert Butterfield presented a series of lectures for the History of Science Committee at the University of Cambridge. There he argued that historians have overlooked an episode of profound intellectual transformation—one apparently comparable in magnitude to the rise of Christianity and that was deeply implicated in the very formation of the “modern mentality.” This episode was of course the Scientific Revolution. But as we have seen from previous posts, the idea of the “scientific revolution,” or, more precisely, “revolutions in science,” had its origins in eighteenth century thought.

Butterfield’s Cambridge lectures, published as The Origins of Modern Science: 1300-1800 (1949), were limned from a tradition of other twentieth-century historians and philosophers—scholars such as Pierre Duhem, Ernst Cassirer, E.A. Burtt, and, most importantly, Alexandre Koyré, who  regarded history as a special resource for illuminating the evolution and progress of science. In fact, it was Koyré who, in 1943, appraised the conceptual changes at the core of the “scientific revolution,” as “the most profound revolution achieved of suffered by the human mind.” It was so profound that human culture “for centuries did not grasp its bearing or meaning; which, even now, is often misvalued and misunderstood.”

Osler - Rethinking the Scientific RevolutionThese traditional narratives by early twentieth-century scholars have customarily focused on a list of canonical figures. These figures usually include Nicholas Copernicus, Tyco Brahe, Johannes Kepler, Galileo Galilei, Rene Descartes, Robert Boyle, and Isaac Newton. Margaret J. Osler’s (ed.) Rethinking the Scientific Revolution (2000) problematizes this canonical list. Questioning the canon leads, according to Osler, to inquire why and how it was formed in the first place. Rethinking the Scientific Revolution is in memory to Betty Jo Teeter Dobbs and Richard S. Westfall, best known for their studies on Isaac Newton and the scientific revolution in the seventeenth century.

Osler’s introduction frames and outlines the discussion in this illuminating work. She argues that one must seek balance, recognizing that intellectual change occurred while at the same time recognizing that change is not necessarily linear or self-evident progress toward our modern way of thinking. Historians, then, need to “recognize the role that their own assumptions play in their constructions of the past. There is no escaping them, but consciously acknowledging them staves off the temptations of claiming objectivity and progress.”

This new approach, Osler argues, is at odds with traditional accounts of the scientific revolution. From nineteenth-century positivist Ernst Mach, historians have told a story that stresses radical discontinuity of the scientific revolution from what came before. This is the story Westfall reiterates. This assumption also embodies an “essentialism” about science, according to which science it defined as unchanging and unambiguously identifiable in every historical era. This essentialism creeps into the interpretation of the scientific revolution itself: having defined the nature of the scientific revolution, historians, such as what H. Floris Cohen has done in his The Scientific Revolution, searched this event and explanations of it. Cohen, who undertook the daunting task of examining the entire historiography of the scientific revolution, as we have seen, nevertheless remained committed to both the reality of the revolution and to its historiographical utility.

Following the work of Quentin Skinner, Osler argues that taking agency seriously means using actors’ categories to account for the development of ideas. She means, in other words, to appropriate ideas of historical actors, to work within their particular social, ideological, and intellectual contexts. Osler argues that “future research must address the interests and concerns of subsequent generations, which created the perception that a scientific revolution occurred in the sixteenth and seventeenth centuries and then bequeathed it to us.”

Since historians of science have interpreted Newton’s work as the climax of the narrative they call the scientific revolution, this radical shift in understanding of the meaning of his work forces us to reconsider may of the received opinions about the nature of the scientific revolution.

The first essay by Betty Jo Teeter Dobbs, presented at the Annual Meeting of the History of Science Society in 1993, opens the discussion by stating her intention “to undermine one of our most followed explanatory frameworks, that of the scientific revolution.” Following I.B. Cohen’s work, Dobbs argues that the narrative of the scientific revolution was constructed in the eighteenth century, when natural philosophers selectively took up Newton’s physics and mathematics while ignoring his alchemical and theological views. Newton, according to Dobbs, is key: “as science accumulated more and more social prestige in the later eighteenth, nineteenth, and twentieth centuries, the image of Newton as principal cultural hero of the new science was handed on and further polished by succeeding generations of scientists and historians.” Indeed, Newton is “the hidden end toward which the whole narrative [i.e. the scientific revolution] is inexorably drawn.” Newton is not only the First Mover in historians’ account, he is also the Final Cause of the scientific revolution.

But this is not the Newton of history. Dobbs summarizes the central problem in a long passage, worth quoting at length:

But to my mind the issue of the proper interpretation of our scientific heroes has been the most pressing problem of all, a problem that was at least in part generated by the concept of the Scientific Revolution. I think the problem arises somewhat in this fashion: we choose for praise the thinkers that seem to us to have contributed to modernity, but we unconsciously assumed that their thought patterns were fundamentally just like ours. Then we look at them a little more closely and discover to our astonishment that our intellectual ancestors are not like us at all: they do not see the full implications of their own work; they refuse to believe things that are now so obviously true; they have metaphysical and religious commitments that they should have known were unnecessary for a study of nature; [and] horror of horrors, they take seriously such misbegotten ideas as astrology, alchemy, magic, the music of the spheres, divine providence, in salvation history.

Newton, alleged epitome of austere, scientific, mathematical rationality, pursued alchemy, apocalyptic theology, hermetism, and other occult practices. The problem, then, according to Dobbs, is a historiographic one. Newton’s “system was very quickly co-opted by the very -isms he fought [i.e. mechanism, materialism, deism, atheism], and adjusted to suit them. He came down to us co-opted, an Enlightenment figure without parallel who could not possibly have been concerned with alchemy or with establishing the existence and activity of a providential God.” In the end, Newton was not one of history’s all-time winners; rather, he is one of history’s great losers, “a loser in a titanic battle between the forces of religion and the forces of irreligion.”

In short, Dobbs calls historians of science to understand the presuppositions and assumptions of their historical actors rather than searching for anticipations of modern ideas in their thought.

Richard S. Westfall, on the other hand, wants to defend the traditional historiography. He argues that the historian’s task is not mere antiquarianism, “We are called to help the present understand itself by understanding how it came to be. We strive to find a meaningful order in the multifarious events of the past and thus, explicitly or implicitly, we pass judgment on the relative importance of events.”

In defending the historiography for which he was one of the most distinguished spokesmen, Westfall responds with reasserting the scientific revolution as “our central organizing idea,” because without it “our discipline will lose its coherence and, what is more, the cause of historical understanding take a significant set backward.” Thus Westfall, Osler argues in her introduction, is “fundamentally forward-looking, based on the assumption that what is interesting in the past are those developments that led to our present understanding of the world.” The crucial difference between Westfall and Dobbs, then, is that Westfall assumes that thinkers in the past are similar to us and that what is important for the historian is that aspect of the thinkers works that has survived until the present or that had led to our present way of looking at things.

Peter Barker agrees that Dobbs’ work “not only shifted the boundaries of Newton scholarship, she changed its center.” In his essay Barker wants to reexamine the “role of religion in the Lutheran response to Copernicus.” According to Barker the doctrine of the Real Presence, stipulated in the Augsburg Confession of 1530, article 10, that “Christ’s body and blood is truly present in, with, and under the bread and wine of the sacrament,” encouraged Lutherans to study any and all aspects of nature, for to do so was coming to know more about God. “For Luther and his followers, the Real Presence was distributed throughout all objects.”  These Lutherans became known as the “Wittenberg Astronomers,” and including Philipp Melanchthon (1497-1560), Joachim Rheticus (1514-1574), Andreas Osiander (1498-1552), Erasmus Reinhold (1511-1553), and Hilderich von Varel (1533-1599). In short, according to Barker, Lutherans expressed an early and strong interest in Copernicus’ work, even arranging for it publication. By the end of the sixteenth century, if you were a Protestant studying almost anywhere in German-speaking Europe, you would have been taught the Copernican system. By the time of Kepler’s education at Tübingen in the 1580s, for example, distinct positions on Copernicus’ work had emerged in northern Europe.

Another compelling essay in Rethinking the Scientific Revolution comes from Jan W. Wojcik’s “pursuing knowledge: Robert Boyle and Isaac Newton.” Wojcik is concerned with the different views of Boyle and Newton regarding the power and scope of human reason. “I think that the most important difference between these two natural philosophers is that they had dramatically different conceptions of God’s intentions concerning human understanding…to what can be known in both natural philosophy and theology, and how that knowledge can best be attained, exactly who can attain this knowledge, and when it might be learned.” Boyle, for example, was content to assent to mysteries, and that God never intended any human beings to a complete understanding of either nature or theological truths during this lifetime. Newton, on the other hand, insisted that God had revealed Christian doctrine with the intent that it be understood in a plain and natural sense, and that God in fact intended at least some individuals to achieve a complete understanding during this lifetime. Despite their differences, Wojcik argues, “it is clear that for both men theological concerns was an absolute priority.”

Moving into their more esoteric studies, Lawrence M. Principe discusses “the alchemy of Robert Boyle and Isaac Newton: alternate approaches and divergent deployments.” His title already suggests that Newton and Boyle—much like everything else—approached alchemy from different angles. According to Principe, those seeking the secrets of alchemy approach the subject through three kinds of sources: (1) the written record left by past adepti; (2) direct communication with living sources; and (3) laboratory investigation. Newton’s alchemical manuscripts, for example, consists of material not his own. “By far the great part of Newton’s alchemical output is in the form of transcriptions, translations, extracts, collations, and compendia of various alchemical authorities. By contrast, most of Boyle’s alchemical tracts are in fact gifts from their authors or copies made by others, rather than copies made specifically by Boyle.

Principe also examines what specific benefits these two students of alchemy expected to reap from such activity. In the case of Boyle, for example, the rewards were increased natural philosophical knowledge, medicinal preparations, and defense of orthodox Christianity. Boyle also expected to obtain the alchemical summum bonum, the secret of the preparation of the Philosopher’s Stone. Newton, on the other hand, expressed doubt in the real existence of the Philosopher’s Stone. Rather, for Newton the study of alchemy was a search for the existence and means of divine activity in the world. Thus an area of relative commonality between Boyle and Newton’s alchemical investigations lies in the service they believed alchemy could render to religion. Indeed, both men “sought alchemy as a corrective to an overly mechanized and potentially atheistic worldview.” Principe shows the ways in which alchemical ideas were important to Boyle and Newton, who are frequently considered to be mechanical philosophers.

By elucidating the similarities between Athanasius Kircher (1601-1680) and Isaac Newton, Paula Findlen raises the question why Newton was incorporated into the canon and Kircher was not. “Both were deeply religious men, committed to the study of nature as a sure path toward the revelation of divine wisdom, who began their academic careers as professors of mathematics. Both valued the learning of the ancients, searching ever further into pagan and Christian past in hope of illumination.” And no where is their commonality most clearly evident, says Findlen, than in their alchemical investigations. Thus “it is only the judgment of later generations that forged our distinction between genius and crackpot.”

In an essay by James G. Force, “the nature of Newton’s holy alliance between science and religion: from the scientific revolution to Newton (and back again),” he argues that we must cease to consider Newton as a cause for the final product of the scientific revolution, agreeing with Dobbs in large part in her astute moderation of the extreme generalities of the grand theorists of the scientific revolution. Newton was not some “protodeist who did not realize the paradoxical nature of his own thought”; rather, he is “a far more complex thinker for whom the Lord God of supreme dominion constitutes the key to understanding the nature of his particular ‘holy alliance’ between science and religion.”

J.E. McGuire, known for co-authoring the oft-cited “Newton and the ‘Pipes of Pan'” (1966), a fascinating and important study of Newton’s belief in the ancient wisdom of Neoplatonic and Pythagorean traditions, underscores in his essay, “the fate of the date: the theology of Newton’s Principia revisited,” the connection between Newton’s alchemy, theology, and natural philosophy. According to McGuire, “God is the ground of all being,” the “spiritual tonos,” the “structuring structure” of Newton’s cosmos, and therefore the Principia acts as a “conduit through which that structure is disclosed.”

While twentieth-century scientists and historians may value Newton’s contributions to mathematics and physics, religious fundamentalists, as Richard Popkins demonstrates in his “Newton and Spinoza and the Bible scholarship of the day,” are more impressed by his approach to biblical scholarship. But Newton, Baruch Spinoza (1632-1677) and Richard Simon (1638-1712) all took seriously the problems that had arisen in the collection, editing, and transmission of Scripture, and that Newton was not committed to claiming the inerrancy of the biblical texts.

Margaret C. Jacob concludes the collection by arguing that the “revolution in science” was constructed in the eighteenth century when natural philosophers selectively took up Newton’s physics and mathematics while ignoring his alchemical and theological views.

At this juncture it is worth mentioning the tireless, and more recent, work of Stephen D. Snobelen, whose main scholarly area of interest is Isaac Newton’s theological and prophetic writings. In several places, beginning with “Isaac Newton, heretic: the strategies of a Nicodemite,” The British Journal for the History of Science 32 (December 1999): 381-419; “‘God of Gods, and Lord of Lords’: the theology of Isaac Newton’s General Scholium to the Principia,” Osiris 16 (2001): 169-208; “‘A time and times and the dividing of time’: Isaac Newton, the Apocalypse and 2060 A.D.,”The Canadian Journal of History 38 (December 2003): 537-551; “To discourse of God: Isaac Newton’s heterodox theology and his natural philosophy,” in Science and dissent in England, 1688-1945, ed. Paul B. Wood (2004), pp. 39-65; “Lust, pride and ambition: Isaac Newton and the devil,” in Newton and Newtonianism: new studies, ed. James E. Force and Sarah Hutton (2004), pp. 155-181; “Isaac Newton, Socinianism and ‘the one supreme God’,” in Socinianism and cultural exchange: the European dimension of Antitrinitarian and Arminian Networks, 1650-1720, ed. Martin Mulsow and Jan Rohls (2005), pp. 241-293; “‘The true frame of Nature’: Isaac Newton, heresy and the reformation of natural philosophy,” in Heterodoxy in early modern science and religion, ed. John Brooke and Ian Maclean (2005), pp. 223-262; “‘Not in the language of Astronomers’: Isaac Newton, Scripture and the hermeneutics of accommodation,” in Interpreting Nature and Scripture in the Abrahamic Religions: History of a Dialogue, ed. Jitse M. van der Meer and Scott H. Mandelbrote. Vol. 1 (2008), pp. 491-530; “Isaac Newton, heresy laws and the persecution of religious dissent,” Enlightenment and Dissent 25 (2009): 204–59; “The Theology of Isaac Newton’s Principia mathematica: a preliminary survey,” Neue Zeitschrift für Systematische Theologie und Religionsphilosophie 52 (2010): 377–412; “The myth of the clockwork universe: Newton, Newtonianism, the the Enlightenment,” in The persistence of the sacred in modern thought, ed. Chris L. Firestone and Nathan Jacobs (2012), pp. 149-84; and “Newton the believer,” in The Isaac Newton Guidebook, ed. Denis R Alexander (2012), pp. 35-44, Snoblelen reveals Newton as a true Renaissance man, who spent decades delving in the secrets of alchemy and even longer studying the Bible, theology and church history. Leaving behind four million words on theology, “Newton was one of the greatest lay theologians of his age.” In his essays, Snobelen’s explores Newton’s theology, prophetic views and the interaction between his science and his religion.

Reading Newton in light of his own preoccupations rather than those of twentieth-century historians forces us, as Dobbs concluded in her essay, to reconsider many of the received opinions about the nature of the “scientific revolution.”

Peter Dear’s Historiography of Not-so-Recent Science

I came across Peter Dear’s “Historiography of Not-so-Recent Science” (Hist. Sci. 1, 2012) while doing some research last week at University of Wisconsin-Madison’s Memorial Library. It is a fine article, reviewing some of the most recent themes and trends on the historiography of science on the period c. 1500-c.1700; that is, on the late Scientific Revolution.

What I found interesting about the article, and worthy of a post here, is the attention Dear gives to recent work on Francis Bacon and Empiricism, Alchemy and Anatomy, Networks and Circulation, Ideas and Intellectual Culture, and Big Names.

To start with, Dear draws our attention to recent work by Sophie Weeks, who “presents a Bacon who sought above all, not just a systematized way of producing by artifice the properties of natural bodies, but whose ambition extended to a kind of ‘magic’ that would create novel things hitherto unheard-of, by forcing nature into paths that it had never followed by itself when ‘free and unconfined.'”

There has also been a “renewed focus on alchemy.” In particular, Dear notes the prolific writings of “William Newman and Lawrence Principe,” who “have striven to establish a particular thread of alchemy as having been central to the intellectual history of science in the seventeenth century.” Although these two authors have played down the spiritual significance of the alchemist’s search for the Philosopher’s Stone, their scholarly work has shown, however, “that both practical techniques and theoretical alchemical doctrines concerning atomism and corpusculariansism played important roles informing the work of such natural philosophers as Robert Boyle and Isaac Newton.”

Pamela Smith’s recent work reveals the movement of material objects as well as of instrumental practices (including such items as plants, instruments, books, astronomical data, ethnographic reports) along the trade routes of the modernizing world, especially those of the Atlantic and Indian Oceans, and thus creating the first “global networks.”

An “intellectualist history of science,” as Dear calls it, is perhaps the most vigorous modes of history of science writing. This is a history of ideas, a history of a specifically intellectual culture. We find this mode in authors such as Steven Nadler, Christa Mercer, Roger Ariew, Stephen Gaukroger, and  Dan Garber. He draws attention to Peter Harrison’s most recent work on the “importance of the Fall from Grace as an element in seventeenth-century evaluations of the potential of human knowledge” and the emergence of modern science.

Finally, Dear still recognizes the importance of the biographical approach to the history of science. John Heilbron’s recent work on Galileo is one example. There is also a veritable cottage industry of work buzzing around the life and work of such men as Robert Boyle and Isaac Newton. Michael Hunter, for example, has made a career on Boyle, whereas Rob Iliffe has created a remarkable website dedicated to publishing in full an online edition of all of Newton’s writings—whether they were printed or not, “The Newton Project.”

Dear aptly concludes that “grand overviews survive in the pedagogically necessary genre of the textbook, but the days of the large scale historical account of the Scientific Revolution seem to be almost gone.”